Rings and Modules

Alexandre Daoud Based on notes by Robert Evans

2015-2016

1 Basic concepts

Definition 1.1. A ring R is a set equipped with two binary operations + and \cdot satisfying the following conditions:

1. (R, +) is an abelian group with identity denoted 0_R

2. \cdot is associative

3. \cdot distributes over +

If \cdot is commutative then R is said to be a **commutative ring**. Furthermore, if there exists an identity element $1_R \in R$ for the operation \cdot then R is said to be **unitary**.

Henceforth, all rings are assumed commutative and unitary. We shall also suppress the \cdot notation as is the standard for multiplication.

Example 1.2. \mathbb{Z}, \mathbb{Q} with their standard addition and multiplication.

Example 1.3. Consider the abelian group $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n. Then $\mathbb{Z}/n\mathbb{Z}$ is also a ring with multiplication modulo n.

Example 1.4. Let R be a ring. Then the ring of polynomials R[X] in the indeterminate X is a ring with the usual polynomial operations.

Definition 1.5. Let R and S be rings. A mapping $\varphi : R \to S$ is called a **homomorphism** if, given $r, r' \in R$, we have

1. $\varphi(r+r') = \varphi(r) + \varphi(r')$ 2. $\varphi(rr') = \varphi(r)\varphi(r')$ 3. $\varphi(1_R) = 1_S$

If φ is bijective then we refer to it as an **isomorphism**. Furthermore, if φ is an isomorphism from R to itself then we call φ an **automorphism**.

Proposition 1.6. Let $\varphi : R \to S$ be a ring homomorphism and let $s \in S$. Then there exists a unique ring homomorphism $\Phi : R[X] \to S$ such that

- $\Phi(r) = \varphi(r)$ for all $r \in R$
- $\Phi(X) = s$

Proof. Let $\sum_{i=0}^{n} r_i X^i \in R[X]$. Then Φ is easily defined as follows:

$$\Phi: R[X] \to S$$
$$\sum_{i=0}^{n} r_i X^i \mapsto \sum_{i=0}^{n} \varphi(r_i) b^i$$

Definition 1.7. Let R be a ring and $I \subseteq R$ a subset. We say that I is an ideal of R, denoted $I \triangleleft R$, if the following conditions are satisfied:

- 1. (I, +) is a subgroup of (R, +)
- 2. For all $i \in I$ and $r \in R$ we have $ir \in I$

Example 1.8. For all $n \in \mathbb{Z}$, the set $n\mathbb{Z}$ is an ideal of \mathbb{Z} .

Example 1.9. Let $R \subseteq \mathbb{C}^n$. Then

$$\{f \in \mathbb{C}[X_1, \dots, X_n] \mid f(p) = 0 \,\forall p \in R\}$$

is an ideal of $\mathbb{C}[X_1,\ldots,X_n]$

Definition 1.10. Let R be a ring and $A \subseteq R$ a subset. We define the **ideal generated by A**, denoted (A), to be the set of all R-linear combinations of elements of A.

Definition 1.11. Let $\varphi : R \to S$ be a ring homomorphism. The **kernel** of φ is defined as

$$\ker \varphi = \{ r \in R \mid \varphi(r) = 0_S \}$$

Proposition 1.12. Let $\varphi : R \to S$ be a ring homomorphism. Then ker φ is an ideal of R.

Proof. This follows directly from the definitions of a ring homomorphism and an ideal. \Box

Definition 1.13. Let R be a ring and $I \triangleleft R$ an ideal. Suppose that $r, r' \in R$ and define the equivalence relationship $r \sim r' \iff r - r' \in I$. In this case, we say that r and r' are **congruent modulo I**. We define the **quotient ring** of R with respect to the ideal I, denoted R/I, as the set of all equivalence classes of \sim . The equivalence class [r] is denoted r + I and is the following set:

$$r + I := [r] = \{ r + i \mid i \in I \}$$

Addition is defined by

$$(r+I) + (r'+I) = (r+r') + I$$

and multiplication by

$$(r+I)(r'+I) = rr' + I$$

Proposition 1.14. The addition and multiplication operations given in Proposition 1.13 are well-defined.

Proof. Fix elements r, r' and s, s' in R. We shall first deal with addition. We need to show that

$$r+I=r'+I,s+I=s'+I\implies (r+s)+I=(r'+s')+I$$

Since r + I = r' + I, we have that $r - r' \in I$. Say $r - r' = i_1$ for $i_1 \in I$. Similarly, $s - s' = i_2$ for $i_2 \in I$. Then

$$(r+s) + I = (r'+i_1+s'+i_2) + I = (r'+s') + i_1 + i_2 + I = (r'+s') + I$$

For multiplication, we have

$$rs + I = (r' + i_1)(s' + i_2) + I = r's' + i_1s' + r'i_2 + i_1i_2 + I$$

Now since I is an ideal, we must have that $i_1s', r'i_2$ and i_1i_2 are in I. The result then follows easily.

Definition 1.15. Let *R* be a ring and $I \triangleleft R$ an ideal. We define the **quotient map** to be the surjective ring homomorphism

$$q: R \to R/I$$
$$r \mapsto r+I$$

Example 1.16. Consider the ring $\mathbb{Z}[X]$ and the ideal $(X^2 + 5) \triangleleft \mathbb{Z}[X]$ (the ideal generated by the polynomial $X^2 + 5$). We may form the quotient ring $\mathbb{Z}[X]/(X^2 + 5)$ whose elements are of the form

$$a + bX + (X^2 + 5)$$

for some $a, b \in \mathbb{Z}$. The ring $\mathbb{Z}[X]/(X^2 + 5)$ can be viewed as enforcing the constraint $X^2 - 5 = 0$ upon $\mathbb{Z}[X]$. Hence we may consider an element of $\mathbb{Z}[X]/(X^2 + 5)$ to be a polynomial a + bX with the usual addition and multiplication except that $X^2 + 5 = 0$. Since $X^2 - 5 - 0$ implies that X is $\pm \sqrt{-5}$, it can be shown that $\mathbb{Z}[X]/(X^2 + 5) \cong \mathbb{Z}[\sqrt{-5}]$.

Theorem 1.17 (First Isomorphism Theorem). Let $\varphi : R \to S$ be a ring homomorphism. Then

$$R/\ker\varphi\cong\operatorname{im}\varphi$$

Proof. Define a map

$$\psi: R/\ker\varphi \to \operatorname{im}\varphi$$
$$r + \ker\varphi \mapsto \varphi(r)$$

Then ψ is well-defined. Indeed, if $r + \ker \varphi = r' + \ker \varphi$ then $r' - r \in \ker \varphi$ and

$$\psi(r + \ker \varphi) = \varphi(r) = \varphi(r) + \varphi(r' - r) = \varphi(r') = \psi(r' + \ker \varphi)$$

 ψ is clearly surjective by construction so it remains to show that ψ is injective. Suppose that $\psi(r + \ker \varphi) = \psi(r' + \ker \varphi)$. Then $\varphi(r) = \varphi(r')$. It follows that $\varphi(r - r') = 0$ whence $r - r' \in \ker \varphi$. Therefore, $r + \ker \varphi = r' + \ker \varphi$.

Finally, ψ is a ring homomorphism. Indeed, each property follows from the corresponding property of φ .

Example 1.18. Returning to Example 1.16 we have a ring homomorphism

$$\varphi: \mathbb{Z}[X] \to \mathbb{C}$$
$$X \mapsto \sqrt{-5}$$

which fixes \mathbb{Z} . The kernel of this mapping is clearly $(X^2 + 5)$ so by the previous theorem, we have that $\mathbb{Z}[X]/(X^2 + 5) \cong \mathbb{Z}[\sqrt{-5}]$.

Definition 1.19. Let R be a ring. We say that R is an **integral domain** if $1_R \neq 0_R$ and, given $r, r' \in R$, rr' = 0 implies that r = 0 or r' = 0

Definition 1.20. Let R be a ring. We say that R is a **field** if $1 \neq 0$ and every non-zero element r has a multiplicative inverse. In this case, r is called a **unit** and we denote by R^{\times} the set of all units.

Example 1.21. \mathbb{Z} is an integral domain.

Example 1.22. If R is an integral domain then so is $R[X_1, \ldots, X_n]$.

Example 1.23. $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field as are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Definition 1.24. Let *R* be a ring and $I \triangleleft R$ a proper ideal. We say that *I* is **prime** if, given $r, r' \in R, rr' \in I$ implies $r \in I$ or $r' \in I$.

Definition 1.25. Let R be a ring and $I \triangleleft R$ a proper ideal. We say that I is **maximal** if there does not exist an ideal J such that $I \subsetneq J \subsetneq R$.

Example 1.26. Let $n \in \mathbb{Z}$. Then $n\mathbb{Z}$ is a prime ideal if and only if n is prime.

Remark. R is an integral domain if and only if $\{0\}$ is prime in R.

Theorem 1.27. Let R be a ring and $I \triangleleft R$ an ideal. Then there is a one-to-one correspondence between the ideals J of A that contain I and the ideals of A/I.

Proof. Fix an ideal $J \triangleleft R$ such that $I \subseteq J$. We define a map sending J to an ideal of R/I by

$$\varphi(J) = J/I = \{ j + I \mid j \in J \}$$

It follows directly from the definition of J that J/I is an ideal in R/I. To show that this is a bijection. We shall construct its inverse. Let \mathfrak{a} be an ideal of R/I. Define a map sending \mathfrak{a} to an ideal of R by

$$\psi(\mathfrak{a}) = \{ r \in R \mid r + I \in \mathfrak{a} \}$$

The fact that the right hand side of the above is an ideal follows directly from the properties of $\mathfrak{a}.$ Now consider

$$\varphi(\psi(\mathfrak{a})) = \{ j + I \mid j \in \psi(\mathfrak{a}) \} = \{ j + I \mid j \in \{ r \in R \mid r + I \in \mathfrak{a} \} \}$$
$$= \{ r + I \mid r + I \in \mathfrak{a} \} = \mathfrak{a}$$

The second composition $\psi \circ \varphi$ follows in a similar way.

Proposition 1.28. Let R be a ring and $I \triangleleft R$ an ideal. Then I is prime if and only if R/I is an integral domain.

Proof. Suppose first that I is prime. Fix r+I, $r'+I \in R/I$ such that (r+I)(r'+I) = 0+I. Then rr'+I = 0+I which implies that $rr' \in I$. Now, I is prime which implies that either r=0 or r'=0. This then implies that either r+I or r'+I equals 0+I.

Conversely, assume that R/I is an integral domain. Fix $rr' \in I$. We need to show that either $r \in I$ or $r' \in I$. Since R/I is an integral domain, we know that (r + I)(r' + I) = rr' + I = 0 + I implies that either r + I or r' + I equal 0 + I. But then, either r or r' are in I.

Lemma 1.29. Let K be a ring. Then K is a field if and only if every ideal is either zero or K.

Proof. First suppose that K is a field and let $I \triangleleft K$ be a non-zero ideal. Fix some non-zero $x \in I$. Since I is an ideal, we must have that $xx^{-1} \in I$. But then $1 \in I$ which means I is equal to K.

Now suppose that every ideal of K is either zero or K. Fix some non-zero $x \in K$. We need to exhibit an inverse for x. Consider the ideal $(x) \triangleleft K$. By hypothesis, (x) is either the zero ideal or the whole ring K. Clearly, it cannot be the zero ideal hence (x) = K. It follows that there must exist some $x^{-1} \in K$ such that $xx^{-1} = 1$.

Proposition 1.30. Let R be a ring and $I \triangleleft R$ an ideal. Then I is maximal if and only if R/I is a field.

Proof. Suppose that R/I is a field. Then by Lemma 1.29 there cannot exist a non-trivial ideal $\mathfrak{a} \triangleleft R/I$. Since all ideals of R/I are of them form J/I for some ideal J of R containing I, we see that there cannot exist an ideal J such that $I \subsetneq J \subsetneq R$ meaning that I is maximal. Note that these conditions are all necessary and sufficient as required. \Box

Lemma 1.31. Any field is necessarily an integral domain.

Proof. Let F be a field and suppose that $x, y \in F$ are such that xy = 0. Without loss of generality, assume that $x \neq 0$. Then $y = y(xx^{-1}) = (yx)x^{-1} = 0$ and F is an integral domain.

Proposition 1.32. Let R be a ring and $\mathfrak{m} \triangleleft R$ a maximal ideal. Then \mathfrak{m} is a prime ideal.

Proof. By Proposition 1.30, we know that R/\mathfrak{m} is a field. By Lemma 1.31 we have that R/\mathfrak{m} is an integral domain. Then Proposition 1.28 implies that \mathfrak{m} is prime.

2 Euclidean Domains and Principal Ideal Domains

Definition 2.1. A Euclidean domain is a pair (R, φ) where R is an integral domain and $\varphi : R \setminus \{0\} \to \mathbb{N}$ is a size function such that

1. For all $a \in R$ and $b \in A \setminus \{0\}$ there exists $q, r \in R$ such that

$$a = bq + r$$

and either r = 0 or $\varphi(r) < \varphi(b)$

2. For all $a, b \in R \setminus \{0\}$ we have $\varphi(a) \leq \varphi(ab)$

Example 2.2. \mathbb{Z} is a Euclidean domain with $\varphi(n) = |n|$.

Example 2.3. Let K be a field. Then K[X] is a Euclidean domain with $\varphi(f) = \deg f$

Definition 2.4. Let R be a ring and $I \triangleleft R$ an ideal. We say that I is **principal** if there exists an $x \in R$ such that I = (x). In this situation, we call x a **generator** for I.

Definition 2.5. Let R be an integral domain. We say that R is a **principal ideal domain** (PID) if every ideal is principal.

Proposition 2.6. Let R be a Euclidean domain. Then R is a principal ideal domain.

Proof. Let φ be the size function of R. Since the zero ideal is principle in R, we only need to consider non-zero ideals. Let $I \triangleleft R$ be a non-zero ideal. Choose a $b \in I \setminus \{0\}$ such that $\varphi(b)$ is minimal. We claim that I = (b).

It is obvious that $(b) \subseteq I$ so we just need to show that $I \subseteq (b)$. Fix some $a \in I$. Then we may write

$$a = qb + r$$

for some $q, r \in R$ such that either r = 0 or $\varphi(r) < \varphi(b)$. We must have r = 0 because if not then $r = a - qb \in I$ with $\varphi(r) < \varphi(b)$ which contradicts the minimality of $\varphi(b)$. hence a = qb for some $q \in R$ whence $a \in (b)$.

Proposition 2.7. Let R be a principal ideal domain and $I \triangleleft R$ a non-zero ideal. If I is prime then it is maximal.

Proof. Let J be an ideal of R containing I. Then I = (x) and J = (y) for some $x, y \in R$. Now $I \subseteq J$ implies that $x \in J$ and so x = yz for some $z \in R$. Hence $yz \in I$. Now I is prime meaning either $y \in I$ or $z \in I$. If $y \in I$ then $J = (y) \subseteq I$ whence I = J. If $z \in I$ then z = wx for some $w \in R$ and thus x = ywx. This implies that yw = 1 whence y is a unit. Hence J = (y) = R and I is maximal. \Box

3 Modules: Basic Notions

Definition 3.1. Let *R* be a ring. An **R-module** is a set *M* with an addition operation $+: M \times M \to M$ and a scalar multiplication operation $\cdot: A \times M \to M$ such that

- 1. (R, +) is an abelian group
- 2. $1_R \cdot m = m$ for all $m \in M$
- 3. $(ab) \cdot m = a \cdot (b \cdot m)$ for all $m \in M, a, b \in R$
- 4. $a \cdot (m+n) = a \cdot m + a \cdot n$ for all $m, n \in M, a \in R$
- 5. $(a+b) \cdot m = a \cdot m + b \cdot m$ for all $m \in M, a, b \in R$

Remark. Fix $r \in R$ and define a mapping

$$\varphi_r: M \to M$$
$$m \mapsto r \cdot m$$

By the 4^{th} property of a module, φ_r is an endomorphism of (M, +). We denote the set of all endomorphisms of M by End(M). We hence have a map

$$\varphi: R \to \operatorname{End}(M)$$

which is a ring homomorphism by Properties 2, 3 and 5.

Conversely, given an abelian group (M, +) and a ring homomorphism $\varphi : R \to \text{End}(M)$, we can make M into an R-module by defining $\cdot : R \times M \to M$ with

$$r \cdot m = \varphi(r)m$$

Example 3.2. Let K be a field. Then a vector space over K is a K-module.

Example 3.3. Let R be a ring and $n \in \mathbb{N}$. Then the set \mathbb{R}^n of column n-vectors with entries in R is an R-module under component wise operations.

Example 3.4. Let (G, +) be an abelian group. Then (G, +) can be viewed as a \mathbb{Z} -module where

$$n \cdot g = \left\{ \begin{array}{ll} g + \cdots + g & \text{ if } n > 0 \\ 0 & \text{ if } n = 0 \\ -(g + \cdots + g) & \text{ if } n < 0 \end{array} \right.$$

Clearly this is the only way to make (G, +) into a \mathbb{Z} -module since $n \cdot g = (1 + \dots + 1)g = g + \dots + g$.

Example 3.5. Let R be a ring. Then we can consider R as a module over itself where scalar multiplication is just ring multiplication.

Example 3.6. Let R be a ring. Then $R[X_1, \ldots, X_n]$ is an R-module.

Definition 3.7. Let R be a ring and M an R-module. A **submodule** of M is a subset $N \subseteq M$ which is an R-module under the induced operations.

Example 3.8. Let M be an abelain group considered as a \mathbb{Z} -module. Then its submodules are the subgroups of (M, +).

Example 3.9. Let K be a field and V a vector space over K. Then its K-submodules are the subspaces of V.

Example 3.10. Let R be a ring considered as a module over itself. Then the R-submodules are just the ideals of R.

Definition 3.11. Let R be a ring and M a module over R. Given a subset $X \subseteq M$ we may define the **submodule of M generated by X**

 $\langle X \rangle = \{ \text{ finite } R \text{-linear combinations of } X \}$

Definition 3.12. Let R be a ring and M an R-module. We say that M is **finitely gener**ated if there exists $m_1, \ldots, m_r \in M$ such that $M = \langle m_1, \ldots, m_r \rangle$. If M is generated by a single element, we say that M is cyclic. **Example 3.13.** Let R be a ring and consider the set of all column n-vectors R^n . The elements

$$e_i = (0, \dots, 0, 1, 0, \dots, 0)^T$$

for all i = 1, ..., n generate A^n as an A-module.

Example 3.14. Let K be a field and V a K-vector space. Then V is finitely generated as a K-module if and only if V is finite dimensional over K.

Example 3.15. Let G be an abelian group. Then G is cyclic as a \mathbb{Z} -module if and only if G is cyclic.

Example 3.16. Let R be a ring and consider it as a module over itself. Then a submodule I of R is cyclic if and only if I is principal as an ideal of R.

Remark. A submodule of a finitely generated module is not necessarily finitely generated. Indeed, consider the ring $2^{\mathbb{N}}$ with operations $X + Y = X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$ and $XY = X \cap Y$ with $0 = \emptyset$ and $1 = \mathbb{N}$ as a module over itself. Then $2^{\mathbb{N}}$ is finitely generated, in particular by 1 but the submodule

$$I = \{ A \subseteq \mathbb{N} \mid A \text{ is finite} \}$$

is not.

Definition 3.17. Let R be a ring and suppose that M and N are R-modules. A **homo-morphism** from M to N is a mapping $\varphi : M \to N$ that preserves R-linear combinations. In other words

1.
$$\varphi(m+m') = \varphi(m) + \varphi(m')$$
 for all $m, m' \in M$

2.
$$\varphi(am) = a\varphi(m)$$
 for all $m \in M, a \in A$

Example 3.18. Let G and H be abelian groups viewed as \mathbb{Z} -modules then a \mathbb{Z} -homomorphism is exactly a group homomorphism.

Example 3.19. Let K be a field and suppose that U and V are K-vector spaces seen as K-modules. Then a K-homomorphism $U \to V$ is a K-linear map.

Remark. Let R be a ring considered as a module over itself. Then the R-endomorphisms are not the same as the ring endomorphisms of R.

Definition 3.20. Let R be a ring and M a module over R. Suppose that N is a R-submodule of M. We define the **quotient module**, denoted M/N, to be the set of cosets of N in M:

$$M/N = \{ m + N : m \in M \}$$

with addition defined by

$$(m+N) + (m'+N) = (m+m') + N$$

and scalar multiplication by

$$a \cdot (m+N) = am + N$$

Theorem 3.21. Let R be a ring and M, N modules over R. If $\varphi : M \to N$ is a module homomorphism then

- 1. ker φ is a submodule of M
- 2. $\operatorname{im} \varphi$ is a submodule of N
- 3. $M / \ker \varphi \cong \operatorname{im} \varphi$

Proof. This are proved in exactly the same way as for the ideal and ring cases. \Box

Definition 3.22. Let R be a ring and M_1, \ldots, M_k a collection of R-modules. We define their **direct sum** as

$$A_1 \oplus + \dots + \oplus A_k$$

to be the *R*-module $A_1 \times \cdots \times A_k$ with component-wise operations. Furthermore, if $\{M_k\}$ is a countable family of *R*-modules, we may define their infinite direct sum in a similar way except we require that all sequences are eventually zero:

$$\bigoplus_{i=1}^{\infty} M_i = \{ (m_1, m_2, \dots) \mid m_i \in M_i \text{ and } \exists n \in \mathbb{N}, m_j = 0 \forall j \ge n \}$$

Example 3.23. Let R be a ring. Then $R^n = R \oplus \cdots \oplus R$ (n times)

Definition 3.24. Let R be a ring and M a module over R. Suppose that $m_1, \ldots, m_n \in M$.

1. We say that m_1, \ldots, m_r are **linearly independent** if

$$r_1m_1 + \dots + r_nm_n = 0$$

implies that all r_1, \ldots, r_n are zero

- 2. We say that m_1, \ldots, m_n span M if $M = \langle m_1, \ldots, m_n \rangle$
- 3. We say that m_1, \ldots, m_n are a **basis** for M if they are linearly independent and span M

Remark. \emptyset is a basis for 0.

Proposition 3.25. Let R be a ring and M a module over R. Suppose that $m_1, \ldots, m_n \in M$. Then the following are equivalent

- 1. m_1, \ldots, m_r form a basis for M over R
- 2. Every $m \in M$ can be written as a unique linear combination of the m_i
- 3. m_1, \ldots, m_r span M and given any R-module N and a mapping

$$f: \{m_1, \ldots, m_n\} \to N$$

Then there exists a unique extension of f to a homomorphism of modules

$$\overline{f}: M \to N$$

Proof. We first show that (1) \implies (2). Suppose that m_1, \ldots, m_r form a basis for M over R. Then m_1, \ldots, m_r are linearly independent and span R. Fix some $m \in M$. Since m_1, \ldots, m_r span M we may write $m = a_1m_1 + \cdots + a_nm_n$. Similarly, let $m = b_1m_1 + \cdots + b_nm_n$ be another linear combination. Then we have

$$0 = (a_1 - b_1)m_1 + \dots + (a_n - b_n)m_n$$

But the m_i are linearly independent so we must have that $a_i - b_i = 0$ for all *i*. Hence $a_i = b_i$ and such linear combinations are unique.

We now show that (2) \implies (3). Consider the mapping $\overline{f} : M \to N$ which sends $a_1m_1 + \cdots + a_nm_n \in M$ to $a_1f(m_1) + \cdots + a_nf(m_n)$. This is indeed a unique well-defined mapping since m can be represented by a unique linear combination of the m_i . Furthermore, \overline{f} satisfies the axioms of a module homomorphism by construction.

Finally, we show that (3) \implies (1). Let N be an R-module and $f : \{m_1, \ldots, m_n\} \to N$ be a mapping which extends uniquely to a module homomorphism $\overline{f} : M \to N$. It suffices to show that m_i are linearly independent. Suppose that

$$r_1m_1 + \dots + r_nm_n = 0$$

for some $r_i \in R$. Let $f_1 : \{m_1, \ldots, m_n\} \to N$ be the function sending m_1 to 1 and the rest of the m_i to 0. Then f_1 extends to a unique function $\overline{f_1} : M \to N$. We then have

$$\overline{f_1}(r_1m_1 + \dots + r_nm_n) = \overline{f_1}(0)$$
$$r_1f_1(m_1) + \dots + r_nf_1(m_n) = 0$$
$$r_1 = 0$$

A similar argument shows that the rest of the r_i are zero. Hence the m_i are linearly independent.

Definition 3.26. Let R be a ring and M a module over R. If there exists a basis for M over R then we say that R is **free**.

Proposition 3.27. Let R be a ring and M a module over R. Then M is finitely generated if and only if there exists some $n \in \mathbb{N}$ and a surjective homomorphism $\varphi : \mathbb{R}^n \to M$.

Proof. First suppose that M is finitely generated over R. Fix some generating set $m_1, \ldots, m_n \in M$. Let $\varphi : R^n \to M$ be the unique homomorphism that sends e_i to m_i . Then clearly, $\operatorname{im} \varphi = M$.

Conversely, given a homomorphism $\varphi : \mathbb{R}^n \to M$ such that im $\varphi = M$ then $\varphi(e_1), \ldots, \varphi(e_n)$ is a generating set for M.

Corollary 3.28. Let R be a ring and M a module over R. Then M is cyclic if and only if M = R/I for some ideal $I \triangleleft R$.

Proof. By Proposition 3.27 we know that M is a generated by one element (cyclic) if and only if there exists some surjective homomorphism $\varphi : A \to M$. By the first isomorphism theorem for rings, this is true if and only if there exists an ideal $I = \ker \varphi$. In other words, $M \cong R/I$.

4 Modules over a Euclidean Domain

Definition 4.1. Let R be a ring and M a module over R. We say that M is **finitely** presented if there exists $n \in \mathbb{N}$ and a finitely generated R-submodule of R^n N such that

$$M \cong \mathbb{R}^n / \mathbb{N}$$

In other words, M is finitely presented if the kernel of the mapping $\varphi : \mathbb{R}^n \to M$ is finitely generated.

Remark. Let R be a ring and let $m_1, \ldots, m_r \in \mathbb{R}^n$. Denote $N = \langle m_1, \ldots, m_n \rangle$. We may write $m_j = \sum_{i=1}^n a_{ij}e_i$ for some $a_{ij} \in \mathbb{R}$ and for all $j = 1, \ldots, r$. Now let $f_i = e_i + N$. Then \mathbb{R}^n/N can be viewed as the R-module generated by the f_i subject to the r relations

$$\sum_{i=1}^{n} a_{ij} f_i = 0$$

Conversely, suppose that M is an R-module generated by some f_1, \ldots, f_n subject to the r relations

$$\sum_{i=1}^{n} a_{ij} f_i = 0$$

where j = 1, ..., r and $a_{ij} \in R$. Then the homomorphism $\varphi : R^n \to M$ which maps e_i to f_i has kernel ker $\varphi = \langle \sum a_{i1}f_i, ..., \sum a_{ir}f_i \rangle$. Then M is clearly finitely presented since $M \cong R^n / \ker \varphi$.

We see that finitely presented modules are exactly those modules that can be described in terms of finitely many generators subject to finitely many relations.

Definition 4.2. Let R be a ring and $\varphi : R^n \to R^m$ an R-homomorphism. Let e_1, \ldots, e_n be the standard basis for R^n and f_1, \ldots, f_m that of R^m . We may write $\varphi(e_j) = \sum_{i=1}^m a_{ij}g_i$. Then we define the **matrix** of φ as

$$\llbracket \varphi \rrbracket = (a_{ij})_{ij} \in \operatorname{Mat}_{m \times n}(A)$$

Remark. We can use matrices to describe the finitely presented matrix R^n/N where $N = \langle m_1, \ldots, m_r \rangle$ and $m_j = \sum_{i=1}^n a_{ij} e_i \in R^n$.

Let h_1, \ldots, h_n be the standard basis for \mathbb{R}^r . Let $\psi : \mathbb{R}^r \to \mathbb{R}^n$ be the \mathbb{R} -homomorphism such that $\psi(h_j) = m_j$ for each j. Then im $\psi = N$ and the $n \times r$ matrix $\llbracket \psi \rrbracket$ encodes each relation as a column. Hence a finitely presented module can be completely described by its **presentation matrix** $\llbracket \psi \rrbracket$

Example 4.3. Let M be the \mathbb{Z} -module generated by e_1, \ldots, e_4 subject to the the relations

$$e_1 + 2_2 + 3e_3 + 4e_4 = 0$$

$$5e_1 + 6e_2 + 7e_3 + 8e_4 = 0$$

then its presentation matrix is

$$\left(\begin{array}{rrrr}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right)$$

Definition 4.4. Let R be a ring and $\Phi \in Mat_{n \times r}(R)$. Then the elementary row (column) operations on Ψ are the following:

- 1. swap two rows (columns)
- 2. multiply a row (column) by a unit in R
- 3. add a scalar multiple of one row (column) to another row (column)

Remark. Let R be a ring and Φ the presentation matrix of a finitely presented R-module. Then a sequence of elementary row operations results in a new set of generators and corresponding relations. A sequence of elementary column operations leaves the generators untouched and results in a new, yet equivalent, set of relations.

Definition 4.5. Let R be a ring and $\Phi, \Psi \in \operatorname{Mat}_{n \times r}(R)$ be two matrices. We say that Φ and Ψ are **equivalent** if one can be obtained from the other by a sequence of elementary row or column operations.

Remark. It follows from the above definition that if two finitely presented *R*-modules have equivalent presentation matrices then they are isomorphic.

Lemma 4.6. Let R be a Euclidean domain and $\Phi \in \operatorname{Mat}_{n \times r}(R)$ a matrix. Let $d(\Phi)$ be the greatest common divisor of all the elements of Φ . If Φ' is the result of applying an elementary operation to Φ then $d(\Phi) = d(\Phi')$.

Proof. The lemma is trivial for all elementary operations except addition of scalar multiples of rows (columns). Now let $\vec{r} = (r_1, \ldots, r_n), \vec{s} = (s_1, \ldots, s_n)$ be rows of Φ and suppose that Φ' is the result of adding $a \in R$ times \vec{s} to \vec{r} . In other words, Φ' is the same matrix as Φ with \vec{r} replaced by $(r_1 + as_1, \ldots, r_n + as_n)$. Then $gcd(r_i + as_i, s_i) = gcd(r_i, s_i)$ for all iwhence $d(\Phi) = d(\Phi')$. The argumentation for columns follows in exactly the same way. \Box

Proposition 4.7. Let (R, φ) be a Euclidean domain and $\Phi \in \operatorname{Mat}_{n \times r}(R)$ a matrix. Let d be the greatest common divisor of all the elements of Φ . Let $\varphi(\Phi)$ denote

$$\varphi(\Phi) = \min_{i,j} \varphi(a_{ij})$$

where the $a_{ij} \in R$ are the elements of Φ . Then there exists a sequence of elementary operations that change Φ into a matrix Φ' such that the smallest element of Φ' (with respect to φ) is d.

Proof. We shall prove the proposition by induction on $\varphi(\Phi)$. It is clear that $\varphi(\Phi) \ge \varphi(d)$. If $\varphi(\Phi) = \varphi(d)$ then we are done. If not then assume, for the induction hypothesis, that the proposition is true for all matrices Φ' with elements in R such that $d(\Phi') = d$ and $\varphi(\Phi') < \varphi(\Phi)$.

Let $a_{uv} \in R$ be such that $\varphi(a_{uv}) = \varphi(\Phi)$. Now since $\varphi(a_{uv}) > \varphi(d)$, there exists an element of Φ , say $a_{lm} \in R$, such that a_{uv} does not divide a_{lm} . Indeed, if this were not the case, then a_{uv} would divide d.

First suppose that a_{lm} is in the same column or row as a_{uv} . In other words, either u = l or v = m. By the definition of a Euclidean domain, we may write $a_{lm} = qa_{uv} + r$ for some $q, r \in R$ such that either r = 0 or $\varphi(r) < \varphi(a_{uv})$. Since a_{uv} does not divide a_{lm} we must have that r is non-zero. If v = m so that a_{uv} and a_{lv} are in the same column, we may replace

the l^{th} row of Φ by the l^{th} row minus q times the u^{th} row. This gives us a matrix Φ' whose lm^{th} element is r. Now since $\varphi(r) < \varphi(a_{uv})$, we have that $\varphi(\Phi') < \varphi(\Phi)$. By Lemma 4.6 we see that $d(\Phi') = d(\Phi) = d$. Hence by the induction hypothesis, we may transform Φ' into a matrix Ψ such that $d(\Psi) = d$ and we are done. A similar argumentation can be applied for the case where l = u and a_{uv} and a_{lm} are in the same row.

Now suppose that a_{lm} is not in the same row or column as a_{uv} . Then a_{uv} divides every element a_{uj} in the same row and every element a_{iv} in the same column. We observe that we may transform Φ to a matrix Φ' where a_{uv} is fixed but all elements in the same row and column as a_{uv} become zero. Indeed, starting with the v^{th} column, we see that there exists a $z_i \in R$ such that $a_{iv} = z_i a_{uv}$. The row operation replacing the i^{th} row with the i^{th} row minus z_i times the u^{th} row makes a_{iv} equal to 0. We repeat this process for all i not equal to u. Similarly, we can perform column operations to transform all elements in the u^{th} row except a_{uv} to 0. Call this new matrix Φ' . By Lemma 4.6, we see that $d(\Phi') = d(\Phi) = d$. Furthermore, $\varphi(\Phi') \leq \varphi(\Phi)$. If $\varphi(\Phi') = d$ then we are done. If not then consider the element a_{lm} that is not divisible by a_{uv} . By assumption, $l \neq u$ and $m \neq v$ so we may replace the u^{th} row of Φ' by the u^{th} row plus the l^{th} row. By construction, $a_{lv} = 0$ so this operation does not change a_{uv} . Call this new matrix Ψ . Then $\varphi(\Psi) \leq \varphi(\Phi)$. However the u^{th} row now contains both a_{lm} and a_{uv} and we may now refer back to the previous case.

Theorem 4.8. Let R be a Euclidean domain and $\Phi \in \operatorname{Mat}_{n \times r}(R)$ a matrix. Then there exists a sequence of elementary operations that put Φ in the form

where $a_1, \ldots, a_k \in \mathbb{R} \setminus \{0\}$ and $a_1 | a_2 | \ldots | a_k$. This is referred to as **Smith normal form**.

Proof. If Φ is the zero matrix then we are done so assume that $\Phi \neq 0$. By Proposition 4.7, we can transform Φ' into a matrix with entry $a_{uv} = d = d(\Phi)$. Clearly a_{uv} divides all the elements of Φ . We may then transform this matrix into one such that $a_{11} = d$. Again by row operations, we may transform the 1st row and column such that a_{11} is unaffected and all other elements in the 1st row and column are zero. We thus have a matrix of the form

$$\left(\begin{array}{cc} d & 0 \\ 0 & \Phi' \end{array}\right)$$

where Φ' is a n-1 by r-1 matrix with elements in R, all divisible by d. We may repeat this process on Φ' and, by induction, the theorem follows.

Theorem 4.9 (Structure Theorem for Finitely Presented Modules over an E.D). Let R be a Euclidean domain. Let M be a finitely presented R-module. Then

$$M \cong R/(a_1) \oplus \cdots \oplus R/(a_k) \oplus R^m$$

for some $m \in \mathbb{N}$ and $a_1, \ldots, a_k \in \mathbb{R} \setminus \{0\}$ such that $a_1|a_2| \ldots |a_k|$.

Proof. By the definition of a finitely presented module, we have that $M \cong \mathbb{R}^n/N$ for some $n \in \mathbb{N}$ and a finitely generated R-submodule of \mathbb{R}^n . Consider the presentation matrix of M, say Φ . We may transform Φ into a matrix Ψ which is in Smith normal form. Then the finitely presented module corresponding to Ψ is isomorphic to M.

Now, \mathbb{R}^n is generated by e_1, \ldots, e_n and the matrix Ψ implies that N satisfies

$$N = \langle a_1 e_1, \dots, a_k e_k \rangle$$

for some $a_1, \ldots, a_k \in \mathbb{R} \setminus \{0\}$ such that $a_1 \mid \ldots \mid a_k$. We thus have that

$$M \cong R^n / N$$

$$\cong \langle e_1, \dots, e_n \rangle / \langle a_1 e_1, \dots, a_k e_k \rangle$$

$$\cong R / (a_1) \oplus \dots \oplus R / (a_k) \oplus R^{n-k}$$

Proposition 4.10. Let R be a PID and N an R-submodule of R^n . Then N is finitely generated.

Proof. We prove the proposition by induction on n. If n = 1 then the proposition is trivial since N is necessarily a principle ideal.

Now suppose that n > 1. Let N be an R-submodule of \mathbb{R}^n . Let π_i denote the projection mapping of N onto its i^{th} coordinate. For example,

$$\pi_1: N \to R$$
$$(x_1, \dots, x_n) \mapsto x_1$$

Then $\pi_1(N)$ is clearly an ideal. Since R is a PID, we must have that $\pi_1(N) = (x)$ for some $x \in R$. Now consider

$$M = \{ (x_2, \dots, x_n) \in \mathbb{R}^{n-1} \mid (0, x_2, \dots, x_n) \in \mathbb{N} \}$$

Clearly, M is an R-submodule of R^{n-1} and, appealing to the induction hypothesis, we may choose a set of generators for M, say y_1, \ldots, y_k . Let $w \in N$ be such that $\pi_1(w) = x$. Then $\{w, (0, y_1), \ldots, (0, y_k)\}$ generate N.

Corollary 4.11. Let R be a PID. Then any finitely generated R-module is finitely presented.

Proof. Let M be a finitely generated R module. By definition, we have $M \cong R^n/N$ for some $n \in \mathbb{N}$ and an R-submodule of R^n , N. By Proposition 4.10, we have that N is finitely generated. By definition, this means that M is finitely presented. \Box

Remark. Since every ED is a PID, the structure theorem holds for finitely generated modules over a Euclidean domain.

5 Noetherian Rings/Modules

Definition 5.1. Let R be a ring. Then R is **Noetherian** if every ideal of R is finitely generated.

Lemma 5.2. Let R be a ring. Then the following conditions are equivalent:

- 1. R is Noetherian
- 2. Every ascending chain of ideals of R is stationary
- 3. Every non-empty set of ideals of R has a maximal element.

Proof. We first show that $(1) \implies (2)$. Suppose that R is Noetherian and let

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$

be an ascending chain of ideals in R. Let I be the union of the I_j for all $j \ge 1$. Then I is an ideal and, since R is Noetherian, it is finitely generated say by $a_1, \ldots, a_n \in R$. Now, for all $1 \le i \le n$ there exists a $j \ge 1$ such that $a_i \in I_j$. Let I_k be the largest such ideal. Then I_k contains all a_1, \ldots, a_n whence $I \subseteq I_k$. We also have the trivial inclusion $I_k \subseteq I$ and we see that the chain is stationary.

We now show that (2) \implies (3). Let \mathcal{I} be a non-empty set of ideals of R. Choose an ideal $I_1 \in \mathcal{I}$. If I_1 is maximal then we are done. If not then $\mathcal{I} \setminus I_1$ is non-empty and we may choose I_2 such that $I_1 \subseteq I_2$. We may continue in this fashion, forming an ascending chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \ldots$ By assumption, this chain is stationary at some I_k . Then this I_k is the desired maximal element of \mathcal{I} .

Finally, we show that (3) \implies (1). Suppose that every non-empty set of ideals of R has a maximal element. Let $I \triangleleft R$ be an ideal. Denote

$$\mathcal{I} = \{ J \subseteq I \mid J \triangleleft R \text{ and } J \text{ is finitely generated} \}$$

Clearly \mathcal{I} is non-empty since it contains the zero ideal. By assumption, we may choose a maximal element of \mathcal{I} , say J. If I = J then we are done. If not then consider $a \in I \setminus J$. Then $(J, \{a\})$ is a finitely generated ideal contained in I which contains J. This is a contradiction to the maximality of J. Hence I = J and I is Noetherian. \Box

Example 5.3. Let R be a PID. Then R is Noetherian.

Example 5.4. Consider $R = \mathbb{Z}[X_1, X_2, ...]$. Then R is not Notherian since

$$(X_1) \subseteq (X_1, X_2) \dots$$

is an ascending chain of ideals that is not stationary.

Theorem 5.5 (Hilbert's Basis Theorem). Let R be Noetherian. Then R[X] is Noetherian.

Proof. Let $I \triangleleft R[X]$ be an ideal. If $f \in R[X]$ then $\lambda(f)$ denotes its leading coefficient. For all $m \in \mathbb{N}$ we define

$$J_m = \{ 0 \} \cup \{ r \in R \mid \exists f \in I, \deg(f) = m, \lambda(f) = r \}$$

It is easy to see that J_m is an ideal of R and that $J_m \subseteq J_{m+1}$ for all $m \in \mathbb{N}$. This defines an ascending chain of ideals

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \ldots$$

Now, R is Noetherian hence there must exist some $n \in \mathbb{N}$ such that $J_n = J_{n+1} = J_{n+2} = \dots$. For all $m \leq n$, the ideal J_m is finitely generated, say

$$J_m = (r_{m1}, \ldots, r_{ms_m})$$

for some $r_{mj} \in R$ and $s_m \in \mathbb{N}$. Now for a fixed $m \in \mathbb{N}$, we have for each $1 \leq j \leq s_m$ some $f_{mj} \in I$ with $\deg(f_{mj}) = m$ and $\lambda(f_{mj}) = r_{mj}$. We claim that the finite set

$$S = \{ f_{mj} \in I \mid m \le n, 1 \le j \le s_m \}$$

generates the ideal I. Indeed, suppose $f \in I$ with $\deg(f) = m$. We first consider the case where $m \leq n$. We have $\lambda(f) \in J_m$ and thus

$$\lambda(f) = \sum_{j=1}^{s_m} b_j r_{mj}$$

for some $b_j \in R$. Hence

$$\deg\left(f - \sum_{j=1}^{s_m} b_j f_{mj}\right) < m$$

Now if m > n then $\lambda(f) \in J_m = J_n$ and thus

$$\lambda(f) = \sum_{j=1}^{s_n} b_j r_{nj}$$

for some $b_j \in R$. Hence

$$\deg\left(f - X^{m-n} \sum_{j=1}^{s_n} b_j f_{nj}\right) < m$$

Inducting on m, we see that in both cases, f may be written as an R[X]-linear combination of elements of S and thus I = (S).

Corollary 5.6. Let R be Noetherian. Then $R[X_1, \ldots, X_n]$ is Noetherian.

Example 5.7. \mathbb{Z} is Noetherian but not a PID.

Example 5.8. Let K be a field. Then $K[X_1, \ldots, X_n]$ is Noetherian.

Example 5.9. If R is any PID then $R[X_1, \ldots, X_n]$ is Noetherian.

Definition 5.10. Let R be a ring and M an R-module. Then M is said to be **Noetherian** if every submodule of M is finitely generated.

Lemma 5.11. Let R be a ring and M an R-module. Then the following conditions are equivalent:

- 1. M is Noetherian
- 2. Every ascending chain of R-submodules of M is stationary
- 3. Every non-empty collection of R-submodules of M has a maximal element

Proof. This follows the exact same argumentation as the case for ideals.

Proposition 5.12. Let R be a ring and

$$0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if both L and N are.

Proof. First suppose that M is Noetherian. Then any ascending chain of submodules of L or N corresponds to an ascending chain of submodules of M and they are thus stationary.

Conversely, suppose that L and N are Noetherian modules. Let $M_1 \subseteq M_2 \subseteq \ldots$ be an ascending chain of submodules of M. Then the ascending chains

$$\alpha^{-1}(M_1) \subseteq \alpha^{-1}(M_2) \subseteq \dots$$

of L and

$$\beta(M_1) \subseteq \beta(M_2) \subseteq \dots$$

of N are stationary. Suppose that $\alpha^{-1}(M_k) = \alpha^{-1}(M_K)$ and $\beta(M_k) = \beta(M_K)$ for all $k \ge K$. We claim that $M_k = M_K$ for all $k \ge K$. Indeed, fix $k \ge K$ and choose $x \in M_k$. Then $\beta(x) \in \beta(M_k) = \beta(M_K)$ and thus there exists a $y \in M_K$ with $\beta(x) = \beta(y)$. This is equivalent to $x - y \in \ker \beta$. But the sequence is exact at M and $\ker(\beta) = \operatorname{im}(\alpha)$ and thus there exists $z \in L$ with $\alpha(z) = x - y \in M_k$. Therefore, $z \in \alpha^{-1}(M_k) = \alpha^{-1}(M_K)$ and we see that $\alpha(z) = x - y \in M_K$. This shows that $x \in M_K$ and thus $M_k = M_K$ for all $k \ge K$. \Box

Corollary 5.13. Let R be a ring and M_1, \ldots, M_n Noetherian R-modules. Then

$$M_1 \oplus \cdots \oplus M_n$$

is Noetherian.

Proof. We prove the corollary by induction on n. If n = 1 then there is nothing to prove so suppose n = 2 for the basis case. We have a short exact sequence

$$0 \longrightarrow M_1 \xrightarrow{\alpha} M_1 \oplus M_2 \xrightarrow{\beta} M_2 \longrightarrow 0$$

with the morphisms given by

$$\alpha: M_1 \to M_1 \oplus M_2$$
$$m_1 \mapsto (m_1, 0)$$

and

$$\beta: M_1 \oplus M_2 \to M_2$$
$$(m_1, m_2) \mapsto m_2$$

Hence by the previous proposition, $M_1 \oplus M_2$ is Noetherian. The corollary then follows by induction on n.

Proposition 5.14. Let R be a Noetherian ring and M a finitely generated R-module. Then M is Noetherian.

Proof. Since M is finitely generated, there exists an $n \in \mathbb{N}$ and a R-submodule of \mathbb{R}^n , say N, such that $M \cong \mathbb{R}^n/N$. The previous corollary implies that \mathbb{R}^n is a Noetherian R-module and we have the exact sequence

$$R^n \longrightarrow M \longrightarrow 0$$

The proposition then implies that M is Noetherian.

Corollary 5.15. Let R be a Notherian ring and M a Noetherian R-module. Then every R-submodule of M is Noetherian.

Proof. Let N be an R-submodule of M. Then, since M is Noetherian, N is finitely generated over R. Since R is a Noetherian module over itself, the previous proposition implies that N is Noetherian.

6 Factorisation

Definition 6.1. Let R be an integral domain. We say that $r \in R$ is **irreducible** if it is not a unit and r = xy for some $x, y \in R$ implies that either x or y are units.

Definition 6.2. Let R be an integral domain. We say that $r \in R$ is **prime** if r|xy for some $x, y \in R$ implies that either r|x or r|y.

Lemma 6.3. Let R be an integral domain. Any prime element of R is necessarily irreducible.

Proof. Let $r \in R$ be prime and suppose that r = xy for some $x, y \in R$. Then by definition of primality, r|x or r|y. Suppose, without loss of generality, that r|x. Then x = rb for some $b \in R$. Then r = rby. Since R is an integral domain, we must have that 1 = by and y is thus a unit. Similarly, if r|y then x is a unit.

Proposition 6.4. Let R be a PID. Then $r \in R$ is prime if and only if it is irreducible.

Proof. The forward case is covered by the previous lemma. It suffices to prove the backwards implication. To this end, let $r \in R$ be irreducible. Since in a PID, any non-zero ideal is prime if and only if it is maximal, it suffices to show that (r) is a maximal ideal. Suppose there exists an ideal $J \triangleleft R$ such that

$$(r) \subseteq J \subseteq R$$

Since R is a PID, we have J = (s) for some $s \in R$. Now, $(r) \subseteq (s)$ so r = sa for some $a \in R$. r is irreducible so either s is a unit or a is the unit. In the former case, (s) = R and in the latter, (s) = (r) and thus (r) is maximal.

Corollary 6.5. Let R be a PID and $r \in R \setminus \{0\}$. Then the following are equivalent

- 1. (r) is maximal
- 2. r is prime
- 3. r is irreducible

Definition 6.6. Let R be an integral domain. We say that R is a **unique factorisation** domain (UFD) if every non-zero $r \in R$ satisfies the following conditions:

UFD1 There exists a natural number n, irreducibles $p_1, \ldots, p_n \in R$ and a unit $u \in R$ such that

$$r = up_1 \dots p_n$$

UFD2 Such a representation is unique up to units. In other words, if $r = vq_1, \ldots, q_m$ is another representation of r then m = n and $p_i = w_i q_i$ for some units $w_i \in R$.

Proposition 6.7. Let R be a UFD. Then $r \in R$ is prime if and only if it is irreducible.

Proof. The forward case is again proven by the lemma. It suffices to show the backwards implication. Let $r \in R$ be irreducible and suppose r|xy for some $x, y \in R$. Then xy = rz for some $z \in R$. If either x = 0 or y = 0 then the result is trivial so assume they are both non-zero. Writing x, y and z as products of irreducibles, we have

$$(up_1\dots p_l)(vq_1\dots q_m) = wrs_1\dots s_n$$

for some units $u, v, w \in R$ and irreducibles $p_i, q_j, s_k \in R$. By UFD2, either r is a product of a unit with a p_i or the product of a unit with a q_j . In the former case, r|x. In the latter case r|y.

Proposition 6.8. Let R be a Noetherian integral domain. Then R satisfies UFD1.

Proof. We shall refer to $r \in R$ as **undecomposable** if it is non-zero, non-unitary and cannot be written as a product of irreducibles. Suppose that $r \in R$ is undecomposable. Then if $r = x_1y_1$ we must have that both x_1 and y_1 are non-units in R and one of them is undecomposable. Say x_1 . We can play the same game with x_1 and write $x_1 = x_2y_2$ for some non-zero, non-unitary $x_2, y_2 \in R$. Say that x_2 is again undecomposable. We then have the ascending chain of ideals

$$(r) \subseteq (x_1) \subseteq (x_2) \subseteq \ldots$$

which is non-stationary. This is a contradiction to R being Noetherian so this process must stop and at one stage, we must be able to retrieve a decomposition into irreducibles. \Box

Proposition 6.9. Let R be an integral domain. Then R is a UFD if and only if it satisfies UFD1 and every irreducible in R is prime.

Proof. The forward implication has been covered by previous results. It suffices to show the backwards implication. To this end, suppose that R satisfies UFD1 and every irreducible in R is prime. We must prove that R satisfies UFD2. Let $r \in R$ be non-zero, non-unitary and suppose that

$$r = p_1 \dots p_m = q_1 \dots q_n$$

for some irreducibles $p_i, q_j \in R$ and $\leq n$. By assumption, each p_i is prime so $p_1|q_1 \ldots q_n$ implies that $p_1|q_j$ for some $1 \leq j \leq n$. After renumbering, we may assume that $p_1|q_1$ so that $q_1 = u_1p_1$. But q_1 and p_1 are irreducible so u_1 must be a unit. Now, cancelling common terms on both sides of the equation, we have

$$p_2 \dots p_m = u_1 q_2 \dots q_n$$

Continuining in this way, we obtain

$$1 = u_1 \dots u_m q_{m+1\dots q_n}$$

for some units $u_i \in R$ such that $q_i = u_i p_i$ (after renumbering). Now if m < n then necessarily q_{m+1} is a unit which is a contradiction. Hence n = m and UFD2 is satisfied.

Corollary 6.10. Any Noetherian integral domain in which every irreducible is prime is a UFD. In particular, every PID is a UFD.

Remark. This implies that the following holds:

$$ED \implies PID \implies UFD$$

Example 6.11. \mathbb{Z} is a UFD.

Example 6.12. Let K be a field. Then K[X] is a UFD.

Definition 6.13. Let R be a UFD. If $r, s \in R$ are non-zero and have prime factorisations

$$r = u p_1^{e_1} \dots p_n^{e_n}$$
$$s = v p_1^{f_1} \dots p_m^{f_m}$$

for some units $u, v \in R$, primes $p_i \in R$, natural numbers e_i, f_j and $n \leq m$ then we define their **greatest common divisor** to be

$$gcd(r,s) = p_1^{\min\{e_1,f_1\}} \dots p_n^{\min\{e_n,f_n\}}$$

Definition 6.14. Let R be a UFD and $f = \sum_{i=0}^{n} r_i X^i \in R[X]$ a non-zero polynomial. We define the **content** of f to be

$$c(f) = \gcd_{0 \le i \le n, r_i \ne 0}(r_i)$$

Definition 6.15. Let R be a UFD and $f \in R[X]$ a non-zero polynomial. Then R is said to be **primitive** if c(f) = 1.

Lemma 6.16. Let R be a UFD and $f \in R[X]$ a non-zero polynomial. Then there exists a primitive polynomial $f_0 \in R[X]$ such that $f = c(f)f_0$.

Proof. This follows immediately upon dividing f through by its content. The resulting polynomial is then primitive.

Proposition 6.17. Let R be a UFD and $f, g \in R[X]$ primitive polynomials. Then fg is primitive.

Proof. Suppose that fg is not primitive. Then c(fg) has a prime factor, say $p \in R$. Consider the homomorphism

$$\pi: R[X] \to (R/(p))[X]$$

Then $\pi(f)\pi(g) = \pi(fg) = 0$. Now, (R/(p))[X] is an integral domain so either $\pi(f) = 0$ or $\pi(g) = 0$. This is equivalent to saying that p|c(f) or p|c(g). But f and g are primitive so this is a contradiction and we must have that fg is primitive. \Box

Corollary 6.18. Let R be a UFD and $f, g \in R[X]$ non-zero polynomials. Then c(fg) = c(f)c(g).

Proof. We may write $f = c(f)f_0$ and $g = c(g)g_0$ for some primitive polynomials f_0 and g_0 . Then $fg = c(f)c(g)f_0g_0$. By the previous proposition, f_0g_0 is primitive and the corollary follows. **Proposition 6.19** (Gauss' Lemma). Let R be a UFD and K = Frac(R). If $f \in R[X]$ is non-constant and irreducible in R[X] then f is irreducible in K[X].

Proof. f is clearly primitive since otherwise, we would be able to factor out its non-unit content. Now suppose that f = gh for some non-units (and thus non-constants) $g, h \in K[X]$. Clearing denominators we may write

$$g = \frac{G}{r}, h = \frac{H}{s}$$

for some $G, H \in R[X]$ and $r, s \in R$ such that r is coprime to c(G) and s is coprime to c(H). Then

$$rs = c(rsf) = c(G)c(H)$$

hence r|c(H) and s|c(G). We may then write

$$f = \frac{G}{a}\frac{H}{b} = \frac{G}{b}\frac{H}{a}$$

but the latter is a product of two polynomials in R[X] and such a decomposition is not possible since f is irreducible in R by hypothesis. Hence f is irreducible in K[X]. \Box

Lemma 6.20. Let R be a UFD and K = Frac(R). If $f \in R[X]$ is a non-constant and irreducible polynomial then

$$R[X] \cap fK[X] = fR[X]$$

Proof. First suppose that g = fh for some $h \in R[X]$, Then $g \in R[X]$ and $g \in fK[X]$.

Conversely, suppose that $g \in R[X] \cap fK[X]$ so that g = fh for some $h \in K[X]$. We first note that f must be primitive since it is irreducible. Now write

$$h = \frac{H}{b}$$

with $H \in R[X]$ and $b \in R$ such that b is coprime to c(H). Then bg = fH and bc(g) = c(H). We therefore have that b|c(H). This implies that b is a unit in R whence $h \in R[X]$. Hence $g \in fR[X]$.

Theorem 6.21. Let R be a Noetherian UFD. Then R[X] is a Noetherian UFD.

Proof. Hilbert's Basis Theorem implies that R[X] is a Noetherian integral domain and, by Proposition 6.8, R[X] satisfies UFD1. Hence by Proposition 6.9, it suffices to show that every irreducible in R[X] is prime. To this end, suppose that $f \in R[X]$ is irreducible. We consider two cases, first suppose that $f \in R$. Then f is irreducible in R. Now R is a UFD and every irreducible is prime in R so f is prime in R. We thus have

$$R[X]/(f) \cong (R/(f))[X]$$

is an integral domain and thus f is prime in R[X].

Now suppose that f is not constant. By the previous lemma, $R[X] \cap fK[X] = fR[X]$ and so

$$R[X]/fR[X] = R[X]/(R[X] \cap fK[X])$$

This implies the existence of an injective ring homomorphism

$$R[X]/fR[X] \hookrightarrow K[X]/fK[X]$$

Now, Gauss' Lemma implies that f is irreducible in K[X] and, since K[X] is a PID, is thus prime in K[X]. We then have that K[X]/fK[X] is an integral domain that contains R[X]/fR[X] as a subring. The latter is therefore also an integral domain whence f is prime in R[X].

Corollary 6.22. Let R be a Noetherian UFD. Then $R[X_1, \ldots, X_n]$ is a Noetherian UFD. **Example 6.23.** $\mathbb{Z}[X_1, \ldots, X_n]$ is a UFD.

Example 6.24. If K is a field then $K[X_1, \ldots, X_n]$ is a UFD.

Proposition 6.25. Let R be an integral domain and $f \in R[X]$ a non-constant monic polynomial. Let $\mathfrak{p} \triangleleft R$ be a prime ideal of R such that the reduction $\overline{f} = f \pmod{\mathfrak{p}}$ is irreducible in $(R/\mathfrak{p})[X]$. Then f is irreducible in R[X].

Proof. Suppose that $f \in R[X]$ is irreducible. Then we can write f = gh for some $g, h \in R[X]$ also monic and non-constant. Then $\overline{f} = \overline{gh}$. But this contradicts the hypothesis that \overline{f} does not factor in $(R/\mathfrak{p})[X]$.

Proposition 6.26 (Eisenstein's Irreducibility Criterion). Let R be an integral domain and $f(X) = \sum_{i=0}^{n} r_i X^i \in R[X]$ be a non-constant monic polynomial in R[X]. Suppose there exists a prime ideal $\mathfrak{p} \triangleleft R$ such that

1.
$$r_i \in \mathfrak{p}$$
 for all $0 \leq i \leq n-1$

2. $r_0 \notin \mathfrak{p}^2$

then f is irreducible in R[X].

Proof. Suppose that $f \in R[X]$ is irreducible. Then we can write f = gh for some $g, h \in R[X]$ monic and non-constant. Reducing modulo \mathfrak{p} we have

$$\overline{g}\overline{h} = \overline{f} = X^n$$

By definition of \mathfrak{p} , R/\mathfrak{p} is an integral domain and so both \overline{g} and \overline{h} have zero constant term. This implies that the constant terms of g and h are elements of \mathfrak{p} . But this would imply that the constant term of f is in \mathfrak{p}^2 which is a contradiction.

7 The Vandermonde Identity

Proposition 7.1. Consider the matrix

$$V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_n \\ \vdots & \vdots & \cdots & \vdots \\ X_1^{n-1} & X_2^{n-1} & \cdots & X_n^{n-1} \end{pmatrix}$$

with entries in $\mathbb{Z}[X_1, \ldots, X_n]$. Then det $V = \prod_{i < j} (X_j - X_i)$

Proof. Let $\Delta(X_1, \ldots, X_n)$ denote det $V \in \mathbb{Z}[X_1, \ldots, X_n]$. Fix some $i \neq j$ and set $X_i = X_j$. Then $\Delta = 0$ since V has two equal columns. Hence Δ is divisible by $X_j - X_i$. Since $\mathbb{Z}[X_1, \ldots, X_n]$ is a UFD and the polynomials $X_j - X_i$ for i < j are all coprime to each other, we see that Δ is divisible by $\prod_{i < j} (X_j - X_i)$. Now, deg $\Delta = \binom{n}{2} = \deg \prod_{i < j} (X_j - X_i)$ hence they must differ only by a constant. To determine this constant, we need look only at the the diagonal term $X_2 X_3^2 \ldots X_n^{n-1}$. This has coefficient 1 in both expressions so the overall constant must be 1.

8 The Cayley-Hamilton Theorem

Theorem 8.1. Let R be a ring and M a finitely generated R-module. Suppose that φ : $M \to M$ is an R-linear endomorphism of M. Then φ satisfies a polynomial equation of the form

$$\varphi^n + r_{n-1}\varphi^{n-1} + \dots + r_0 = 0$$

for some $r_i \in R$

Proof. Let x_1, \ldots, x_n be generators for M over R. Then

$$\varphi(x_i) = \sum_{j=1}^n r_{ij} x_j$$

for all $1 \leq i \leq n$ where $r_{ij} \in R$. Denote $\Phi = (r_{ij}) \in M_n(R)$. Given $m \in M$, we may consider M to be an $R[\varphi]$ -module by taking scalar multiplication to be

$$\varphi \cdot m = \varphi(m)$$

Now define the matrix

 $C = \varphi I - \Phi$

which is an element of $M_n(R[\varphi])$. Then, by construction,

$$C(x_1,\ldots,x_n)^T = \vec{0} \in M^n$$

Left multiplying by the adjugate of C and using the definition of the determinant, we have

$$\det C(x_1,\ldots,x_n)^T = (\operatorname{adj} C)C(x_1,\ldots,x_n)^T = \vec{0} \in M^n$$

But x_1, \ldots, x_n generate M so we must have that det C = 0. The result then follows upon expanding the definition of det C.

Remark. The above theorem can be reformulated to state that any matrix with entries in a commutative ring satisfies its own characteristic polynomial - a more general version of the well-known theorem of linear algebra.

9 Chinese Remainder Theorem

Lemma 9.1. Let R be a ring and $I, J \triangleleft R$ ideals. Then the following sets are also ideals of R:

$$I + J := \left\{ x + y \mid x \in I, y \in J \right\}$$
$$IJ := \left\{ \sum_{i=1}^{n} x_i y_i \mid x_i \in I, y_i \in J, n \in \mathbb{N} \right\}$$

furthermore, we have the following relations:

- 1. $I + J = I \cup J$
- 2. $IJ \subseteq I \cap J$

3. (x)(y) = (xy) for all $x, y \in R$

Proof. It is clear that I + J is a subgroup of (R, +) so suppose that $r \in R$ and $i \in I + J$. By definition, i = x + y for some $x \in I, y \in J$. Then ir = (x + y)r = xr + yr. But I and J are both ideals so $xr \in I, yr \in J$ whence $ir \in R$ and I + J is an ideal.

It is also clear that IJ is a subgroup of (R, +) so suppose that $r \in R$ and $i \in IJ$. By definition we have $i = \sum_{i=1}^{n} x_i y_i$ for some $x_i \in I, y_i \in J$ and $n \in \mathbb{N}$. Then

$$ir = \sum_{i=1}^{n} x_i y_i r$$

Now, $y_i r \in J$ for all $1 \leq i \leq n$ so, clearly the above is also an element of IJ. This shows that IJ is an ideal of R.

To prove the relations, first let $i \in I + J$. Then, by definition, i = x + y for some $x \in I, y \in J$. Since $I \cup J$ is an ideal and, in particular, an additive group, we must therefore have that $x + y \in I + J$ if and only if $x + y \in I \cup J$.

Now suppose that $i \in IJ$. Then $i = \sum_{i=1}^{n} x_i y_i$ for some $x_i \in I, y_i \in J$ and $n \in \mathbb{N}$. Now, for *i* to be an element of $I \cap J$, we would require that $i \in I$ and $i \in J$. Fix some $1 \leq i \leq n$ and consider the corresponding term in the expansion of *i*: $x_i y_i$. x_i is an element of *I* and y_i is an element of *R* so, by definition, $x_i y_i \in I$. Similarly, $x_i y_i \in J$. Now by the additive subgroup property of IJ, we see that the entire summation is an element of $I \cap J$ and we are done.

Finally, suppose that $i \in (x)(y)$. Then $i = \sum_{i=1}^{n} x_i y_i$ for some $x_i \in (x), y_i \in (y)$ and $n \in \mathbb{N}$. Clearly each term in the summation is an element of (xy) whence the entire summation is an element of (xy). Conversely, suppose that $i \in (xy)$. Then i = rxy for some $r \in R$. We may consider rx to be an element of (x) itself so that rxy is indeed an element of (x)(y) and the lemma is proved.

Definition 9.2. Let *R* be a ring and $I, J \triangleleft R$ ideals. Then *I* and *J* are said to be comaximal if I + J = R.

Remark. The condition that two ideals I and J are comaximal is equivalent to the condition that there exists, $x \in I, y \in J$ such that x + y = 1.

Example 9.3. Consider the ideals (2), (3) in \mathbb{Z} . Then these ideals are comaximal.

Lemma 9.4. Let R be a ring and $I, J \triangleleft R$ comaximal ideals. Then $IJ = I \cap J$.

Proof. By the previous lemma, it suffices to show that $I \cap J \subseteq IJ$. Since I and J are comaximal, we may choose $x \in I, y \in J$ such that x + y = 1. Then, given any $i \in I \cap J$, we have $ix + iy = i \in IJ$.

Theorem 9.5. Let R be a ring and $I, J \triangleleft R$ comaximal ideals. Then

$$R/IJ \cong R/I \times R/J$$

Proof. Consider the homomorphism of rings

$$\varphi: R \to R/I \times R/J$$
$$\varphi(r) \mapsto (r+I, r+J)$$

Clearly, ker $\varphi = I \cap J$. By the previous lemma, the kernel is therefore equal to IJ. Now it suffices to prove that φ is surjective whence the theorem will follow by application of the first isomorphism theorem. To this end, suppose that $(r_1 + I, r_2 + J) \in R/I \times R/J$. Note that

$$\varphi(x) = (x + I, 1 - y + J) = (0 + I, 1 + J)$$

$$\varphi(y) = (1 - x + I, y + J) = (1 + I, 0 + J)$$

so that

$$\varphi(r_1y + r_2x) = (r_1 + I, r_2 + I)$$

and thus φ is surjective.

Corollary 9.6. Let R be a ring and $I_1, \ldots, I_n \triangleleft R$ a collection of pairwise comaximal ideals. Then

$$R/I_1 \dots I_n \cong R/I_1 \oplus \dots \oplus R/I_n$$

Proof. We prove the corollary by induction on n. The case where n = 2 is covered by the previous theorem. It thus suffices to show that I_1 and $I_2 \ldots I_n$ are comaximal. Indeed, for all $i = 2, \ldots, n$ there exists $x_i \in I_1$ and $y_i \in I_i$ such that

$$x_i + y_i = 1$$

This implies that $y_2 \dots y_n \cong 1 \pmod{I_1}$. In other words, there exists $\tilde{x} \in I_1$ such that

$$\tilde{x} + y_2 \dots y_n = 1$$

and thus I_1 and $I_2 \ldots I_n$ are comaximal. Hence

$$R/I_1 \dots I_n \cong R/I_1 \oplus R/I_2 \dots I_n$$

and the corollary follows by induction on n.

Corollary 9.7 (Chinese Remainder Theorem). Let R be a ring and suppose that $r_1, \ldots, r_k \in R$ generate pairwise comaximal ideals. Then

$$R/(r_1 \dots r_k) \cong R/(r_1) \oplus \dots \oplus R/(r_k)$$

Example 9.8. Let n be a natural number and let $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$ be its unique factorisation into distinct primes p_i . Then

$$\mathbb{Z}/(n) \cong \mathbb{Z}/(p_1^{\alpha_1}) \oplus \cdots \oplus \mathbb{Z}(p_k^{\alpha_k})$$