Rings and Modules

Alexandre Daoud
Based on notes by Robert Evans

2015-2016

1 Basic concepts

Definition 1.1. A ring R is a set equipped with two binary operations + and \cdot satisfying the following conditions:

1. $(R,+)$ is an abelian group with identity denoted 0_{R}
2. • is associative
3. distributes over +

If \cdot is commutative then R is said to be a commutative ring. Furthermore, if there exists an identity element $1_{R} \in R$ for the operation \cdot then R is said to be unitary.

Henceforth, all rings are assumed commutative and unitary. We shall also suppress the ' $'$ notation as is the standard for multiplication.

Example 1.2. \mathbb{Z}, \mathbb{Q} with their standard addition and multiplication.
Example 1.3. Consider the abelian group $\mathbb{Z} / n \mathbb{Z}$ of integers modulo n. Then $\mathbb{Z} / n \mathbb{Z}$ is also a ring with multiplication modulo n.

Example 1.4. Let R be a ring. Then the ring of polynomials $R[X]$ in the indeterminate X is a ring with the usual polynomial operations.

Definition 1.5. Let R and S be rings. A mapping $\varphi: R \rightarrow S$ is called a homomorphism if, given $r, r^{\prime} \in R$, we have

1. $\varphi\left(r+r^{\prime}\right)=\varphi(r)+\varphi\left(r^{\prime}\right)$
2. $\varphi\left(r r^{\prime}\right)=\varphi(r) \varphi\left(r^{\prime}\right)$
3. $\varphi\left(1_{R}\right)=1_{S}$

If φ is bijective then we refer to it as an isomorphism. Furthermore, if φ is an isomorphism from R to itself then we call φ an automorphism.

Proposition 1.6. Let $\varphi: R \rightarrow S$ be a ring homomorphism and let $s \in S$. Then there exists a unique ring homomorphism $\Phi: R[X] \rightarrow S$ such that

- $\Phi(r)=\varphi(r)$ for all $r \in R$
- $\Phi(X)=s$

Proof. Let $\sum_{i=0}^{n} r_{i} X^{i} \in R[X]$. Then Φ is easily defined as follows:

$$
\begin{aligned}
& \Phi: R[X] \rightarrow S \\
& \sum_{i=0}^{n} r_{i} X^{i} \mapsto \sum_{i=0}^{n} \varphi\left(r_{i}\right) b^{i}
\end{aligned}
$$

Definition 1.7. Let R be a ring and $I \subseteq R$ a subset. We say that I is an ideal of R, denoted $I \triangleleft R$, if the following conditions are satisfied:

1. $(I,+)$ is a subgroup of $(R,+)$
2. For all $i \in I$ and $r \in R$ we have $i r \in I$

Example 1.8. For all $n \in \mathbb{Z}$, the set $n \mathbb{Z}$ is an ideal of \mathbb{Z}.
Example 1.9. Let $R \subseteq \mathbb{C}^{n}$. Then

$$
\left\{f \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right] \mid f(p)=0 \forall p \in R\right\}
$$

is an ideal of $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$
Definition 1.10. Let R be a ring and $A \subseteq R$ a subset. We define the ideal generated by A, denoted (A), to be the set of all R-linear combinations of elements of A.

Definition 1.11. Let $\varphi: R \rightarrow S$ be a ring homomorphism. The kernel of φ is defined as

$$
\operatorname{ker} \varphi=\left\{r \in R \mid \varphi(r)=0_{S}\right\}
$$

Proposition 1.12. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\operatorname{ker} \varphi$ is an ideal of R.
Proof. This follows directly from the definitions of a ring homomorphism and an ideal.
Definition 1.13. Let R be a ring and $I \triangleleft R$ an ideal. Suppose that $r, r^{\prime} \in R$ and define the equivalence relationship $r \sim r^{\prime} \Longleftrightarrow r-r^{\prime} \in I$. In this case, we say that r and r^{\prime} are congruent modulo \mathbf{I}. We define the quotient ring of R with respect to the ideal I, denoted R / I, as the set of all equivalence classes of \sim. The equivalence class $[r]$ is denoted $r+I$ and is the following set:

$$
r+I:=[r]=\{r+i \mid i \in I\}
$$

Addition is defined by

$$
(r+I)+\left(r^{\prime}+I\right)=\left(r+r^{\prime}\right)+I
$$

and multiplication by

$$
(r+I)\left(r^{\prime}+I\right)=r r^{\prime}+I
$$

Proposition 1.14. The addition and multiplication operations given in Proposition 1.13 are well-defined.

Proof. Fix elements r, r^{\prime} and s, s^{\prime} in R. We shall first deal with addition. We need to show that

$$
r+I=r^{\prime}+I, s+I=s^{\prime}+I \Longrightarrow(r+s)+I=\left(r^{\prime}+s^{\prime}\right)+I
$$

Since $r+I=r^{\prime}+I$, we have that $r-r^{\prime} \in I$. Say $r-r^{\prime}=i_{1}$ for $i_{1} \in I$. Similarly, $s-s^{\prime}=i_{2}$ for $i_{2} \in I$. Then

$$
(r+s)+I=\left(r^{\prime}+i_{1}+s^{\prime}+i_{2}\right)+I=\left(r^{\prime}+s^{\prime}\right)+i_{1}+i_{2}+I=\left(r^{\prime}+s^{\prime}\right)+I
$$

For multiplication, we have

$$
r s+I=\left(r^{\prime}+i_{1}\right)\left(s^{\prime}+i_{2}\right)+I=r^{\prime} s^{\prime}+i_{1} s^{\prime}+r^{\prime} i_{2}+i_{1} i_{2}+I
$$

Now since I is an ideal, we must have that $i_{1} s^{\prime}, r^{\prime} i_{2}$ and $i_{1} i_{2}$ are in I. The result then follows easily.

Definition 1.15. Let R be a ring and $I \triangleleft R$ an ideal. We define the quotient map to be the surjective ring homomorphism

$$
\begin{aligned}
q: R & \rightarrow R / I \\
r & \mapsto r+I
\end{aligned}
$$

Example 1.16. Consider the ring $\mathbb{Z}[X]$ and the ideal $\left(X^{2}+5\right) \triangleleft \mathbb{Z}[X]$ (the ideal generated by the polynomial $\left.X^{2}+5\right)$. We may form the quotient ring $\mathbb{Z}[X] /\left(X^{2}+5\right)$ whose elements are of the form

$$
a+b X+\left(X^{2}+5\right)
$$

for some $a, b \in \mathbb{Z}$. The ring $\mathbb{Z}[X] /\left(X^{2}+5\right)$ can be viewed as enforcing the constraint $X^{2}-5=0$ upon $\mathbb{Z}[X]$. Hence we may consider an element of $\mathbb{Z}[X] /\left(X^{2}+5\right)$ to be a polynomial $a+b X$ with the usual addition and multiplication except that $X^{2}+5=0$. Since $X^{2}-5-0$ implies that X is $\pm \sqrt{-5}$, it can be shown that $\mathbb{Z}[X] /\left(X^{2}+5\right) \cong \mathbb{Z}[\sqrt{-5}]$.

Theorem 1.17 (First Isomorphism Theorem). Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then

$$
R / \operatorname{ker} \varphi \cong \operatorname{im} \varphi
$$

Proof. Define a map

$$
\begin{aligned}
\psi: & R / \operatorname{ker} \varphi
\end{aligned} \rightarrow \operatorname{im} \varphi \text { } \quad r+\operatorname{ker} \varphi \mapsto \varphi(r)
$$

Then ψ is well-defined. Indeed, if $r+\operatorname{ker} \varphi=r^{\prime}+\operatorname{ker} \varphi$ then $r^{\prime}-r \in \operatorname{ker} \varphi$ and

$$
\psi(r+\operatorname{ker} \varphi)=\varphi(r)=\varphi(r)+\varphi\left(r^{\prime}-r\right)=\varphi\left(r^{\prime}\right)=\psi\left(r^{\prime}+\operatorname{ker} \varphi\right)
$$

ψ is clearly surjective by construction so it remains to show that ψ is injective. Suppose that $\psi(r+\operatorname{ker} \varphi)=\psi\left(r^{\prime}+\operatorname{ker} \varphi\right)$. Then $\varphi(r)=\varphi\left(r^{\prime}\right)$. It follows that $\varphi\left(r-r^{\prime}\right)=0$ whence $r-r^{\prime} \in \operatorname{ker} \varphi$. Therefore, $r+\operatorname{ker} \varphi=r^{\prime}+\operatorname{ker} \varphi$.

Finally, ψ is a ring homomorphism. Indeed, each property follows from the corresponding property of φ.

Example 1.18. Returning to Example 1.16 we have a ring homomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z}[X] & \rightarrow \mathbb{C} \\
X & \mapsto \sqrt{-5}
\end{aligned}
$$

which fixes \mathbb{Z}. The kernel of this mapping is clearly $\left(X^{2}+5\right)$ so by the previous theorem, we have that $\mathbb{Z}[X] /\left(X^{2}+5\right) \cong \mathbb{Z}[\sqrt{-5}]$.

Definition 1.19. Let R be a ring. We say that R is an integral domain if $1_{R} \neq 0_{R}$ and, given $r, r^{\prime} \in R, r r^{\prime}=0$ implies that $r=0$ or $r^{\prime}=0$

Definition 1.20. Let R be a ring. We say that R is a field if $1 \neq 0$ and every non-zero element r has a multiplicative inverse. In this case, r is called a unit and we denote by R^{\times} the set of all units.

Example 1.21. \mathbb{Z} is an integral domain.
Example 1.22. If R is an integral domain then so is $R\left[X_{1}, \ldots, X_{n}\right]$.
Example 1.23. $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is a field as are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
Definition 1.24. Let R be a ring and $I \triangleleft R$ a proper ideal. We say that I is prime if, given $r, r^{\prime} \in R, r r^{\prime} \in I$ implies $r \in I$ or $r^{\prime} \in I$.

Definition 1.25. Let R be a ring and $I \triangleleft R$ a proper ideal. We say that I is maximal if there does not exist an ideal J such that $I \subsetneq J \subsetneq R$.

Example 1.26. Let $n \in \mathbb{Z}$. Then $n \mathbb{Z}$ is a prime ideal if and only if n is prime.
Remark. R is an integral domain if and only if $\{0\}$ is prime in R.
Theorem 1.27. Let R be a ring and $I \triangleleft R$ an ideal. Then there is a one-to-one correspondence between the ideals J of A that contain I and the ideals of A / I.

Proof. Fix an ideal $J \triangleleft R$ such that $I \subseteq J$. We define a map sending J to an ideal of R / I by

$$
\varphi(J)=J / I=\{j+I \mid j \in J\}
$$

It follows directly from the definition of J that J / I is an ideal in R / I. To show that this is a bijection. We shall construct its inverse. Let \mathfrak{a} be an ideal of R / I. Define a map sending \mathfrak{a} to an ideal of R by

$$
\psi(\mathfrak{a})=\{r \in R \mid r+I \in \mathfrak{a}\}
$$

The fact that the right hand side of the above is an ideal follows directly from the properties of \mathfrak{a}. Now consider

$$
\begin{aligned}
\varphi(\psi(\mathfrak{a}))=\{j+I \mid j \in \psi(\mathfrak{a})\} & =\{j+I \mid j \in\{r \in R \mid r+I \in \mathfrak{a}\}\} \\
& =\{r+I \mid r+I \in \mathfrak{a}\}=\mathfrak{a}
\end{aligned}
$$

The second composition $\psi \circ \varphi$ follows in a similar way.
Proposition 1.28. Let R be a ring and $I \triangleleft R$ an ideal. Then I is prime if and only if R / I is an integral domain.

Proof. Suppose first that I is prime. Fix $r+I, r^{\prime}+I \in R / I$ such that $(r+I)\left(r^{\prime}+I\right)=0+I$. Then $r r^{\prime}+I=0+I$ which implies that $r r^{\prime} \in I$. Now, I is prime which implies that either $r=0$ or $r^{\prime}=0$. This then implies that either $r+I$ or $r^{\prime}+I$ equals $0+I$.

Conversely, assume that R / I is an integral domain. Fix $r r^{\prime} \in I$. We need to show that either $r \in I$ or $r^{\prime} \in I$. Since R / I is an integral domain, we know that $(r+I)\left(r^{\prime}+I\right)=$ $r r^{\prime}+I=0+I$ implies that either $r+I$ or $r^{\prime}+I$ equal $0+I$. But then, either r or r^{\prime} are in I.

Lemma 1.29. Let K be a ring. Then K is a field if and only if every ideal is either zero or K.

Proof. First suppose that K is a field and let $I \triangleleft K$ be a non-zero ideal. Fix some non-zero $x \in I$. Since I is an ideal, we must have that $x x^{-1} \in I$. But then $1 \in I$ which means I is equal to K.

Now suppose that every ideal of K is either zero or K. Fix some non-zero $x \in K$. We need to exhibit an inverse for x. Consider the ideal $(x) \triangleleft K$. By hypothesis, (x) is either the zero ideal or the whole ring K. Clearly, it cannot be the zero ideal hence $(x)=K$. It follows that there must exist some $x^{-1} \in K$ such that $x x^{-1}=1$.

Proposition 1.30. Let R be a ring and $I \triangleleft R$ an ideal. Then I is maximal if and only if R / I is a field.

Proof. Suppose that R / I is a field. Then by Lemma 1.29 there cannot exist a non-trivial ideal $\mathfrak{a} \triangleleft R / I$. Since all ideals of R / I are of them form J / I for some ideal J of R containing I, we see that there cannot exist an ideal J such that $I \subsetneq J \subsetneq R$ meaning that I is maximal. Note that these conditions are all necessary and sufficient as required.

Lemma 1.31. Any field is necessarily an integral domain.
Proof. Let F be a field and suppose that $x, y \in F$ are such that $x y=0$. Without loss of generality, assume that $x \neq 0$. Then $y=y\left(x x^{-1}\right)=(y x) x^{-1}=0$ and F is an integral domain.

Proposition 1.32. Let R be a ring and $\mathfrak{m} \triangleleft R$ a maximal ideal. Then \mathfrak{m} is a prime ideal.
Proof. By Proposition 1.30, we know that R / \mathfrak{m} is a field. By Lemma 1.31 we have that R / \mathfrak{m} is an integral domain. Then Proposition 1.28 implies that \mathfrak{m} is prime.

2 Euclidean Domains and Principal Ideal Domains

Definition 2.1. A Euclidean domain is a pair (R, φ) where R is an integral domain and $\varphi: R \backslash\{0\} \rightarrow \mathbb{N}$ is a size function such that

1. For all $a \in R$ and $b \in A \backslash\{0\}$ there exists $q, r \in R$ such that

$$
a=b q+r
$$

and either $r=0$ or $\varphi(r)<\varphi(b)$
2. For all $a, b \in R \backslash\{0\}$ we have $\varphi(a) \leq \varphi(a b)$

Example 2.2. \mathbb{Z} is a Euclidean domain with $\varphi(n)=|n|$.
Example 2.3. Let K be a field. Then $K[X]$ is a Euclidean domain with $\varphi(f)=\operatorname{deg} f$
Definition 2.4. Let R be a ring and $I \triangleleft R$ an ideal. We say that I is principal if there exists an $x \in R$ such that $I=(x)$. In this situation, we call x a generator for I.

Definition 2.5. Let R be an integral domain. We say that R is a principal ideal domain (PID) if every ideal is principal.

Proposition 2.6. Let R be a Euclidean domain. Then R is a principal ideal domain.
Proof. Let φ be the size function of R. Since the zero ideal is principle in R, we only need to consider non-zero ideals. Let $I \triangleleft R$ be a non-zero ideal. Choose a $b \in I \backslash\{0\}$ such that $\varphi(b)$ is minimal. We claim that $I=(b)$.

It is obvious that $(b) \subseteq I$ so we just need to show that $I \subseteq(b)$. Fix some $a \in I$. Then we may write

$$
a=q b+r
$$

for some $q, r \in R$ such that either $r=0$ or $\varphi(r)<\varphi(b)$. We must have $r=0$ because if not then $r=a-q b \in I$ with $\varphi(r)<\varphi(b)$ which contradicts the minimality of $\varphi(b)$. hence $a=q b$ for some $q \in R$ whence $a \in(b)$.

Proposition 2.7. Let R be a principal ideal domain and $I \triangleleft R$ a non-zero ideal. If I is prime then it is maximal.

Proof. Let J be an ideal of R containing I. Then $I=(x)$ and $J=(y)$ for some $x, y \in R$. Now $I \subseteq J$ implies that $x \in J$ and so $x=y z$ for some $z \in R$. Hence $y z \in I$. Now I is prime meaning either $y \in I$ or $z \in I$. If $y \in I$ then $J=(y) \subseteq I$ whence $I=J$. If $z \in I$ then $z=w x$ for some $w \in R$ and thus $x=y w x$. This implies that $y w=1$ whence y is a unit. Hence $J=(y)=R$ and I is maximal.

3 Modules: Basic Notions

Definition 3.1. Let R be a ring. An R-module is a set M with an addition operation $+: M \times M \rightarrow M$ and a scalar multiplication operation $\cdot: A \times M \rightarrow M$ such that

1. $(R,+)$ is an abelian group
2. $1_{R} \cdot m=m$ for all $m \in M$
3. $(a b) \cdot m=a \cdot(b \cdot m)$ for all $m \in M, a, b \in R$
4. $a \cdot(m+n)=a \cdot m+a \cdot n$ for all $m, n \in M, a \in R$
5. $(a+b) \cdot m=a \cdot m+b \cdot m$ for all $m \in M, a, b \in R$

Remark. Fix $r \in R$ and define a mapping

$$
\begin{aligned}
\varphi_{r}: M & \rightarrow M \\
m & \mapsto r \cdot m
\end{aligned}
$$

By the $4^{\text {th }}$ property of a module, φ_{r} is an endomorphism of $(M,+)$. We denote the set of all endomorphisms of M by $\operatorname{End}(M)$. We hence have a map

$$
\varphi: R \rightarrow \operatorname{End}(M)
$$

which is a ring homomorphism by Properties 2, 3 and 5.
Conversely, given an abelian group $(M,+)$ and a ring homomorphism $\varphi: R \rightarrow \operatorname{End}(M)$, we can make M into an R-module by defining $\cdot: R \times M \rightarrow M$ with

$$
r \cdot m=\varphi(r) m
$$

Example 3.2. Let K be a field. Then a vector space over K is a K-module.
Example 3.3. Let R be a ring and $n \in \mathbb{N}$. Then the set R^{n} of column n-vectors with entries in R is an R-module under component wise operations.

Example 3.4. Let $(G,+)$ be an abelian group. Then $(G,+)$ can be viewed as a \mathbb{Z}-module where

$$
n \cdot g= \begin{cases}g+\cdots+g & \text { if } n>0 \\ 0 & \text { if } n=0 \\ -(g+\cdots+g) & \text { if } n<0\end{cases}
$$

Clearly this is the only way to make $(G,+)$ into a \mathbb{Z}-module since $n \cdot g=(1+\cdots+1) g=$ $g+\cdots+g$.

Example 3.5. Let R be a ring. Then we can consider R as a module over itself where scalar multiplication is just ring multiplication.

Example 3.6. Let R be a ring. Then $R\left[X_{1}, \ldots, X_{n}\right]$ is an R-module.
Definition 3.7. Let R be a ring and M an R-module. A submodule of M is a subset $N \subseteq M$ which is an R-module under the induced operations.

Example 3.8. Let M be an abelain group considered as a \mathbb{Z}-module. Then its submodules are the subgroups of $(M,+)$.

Example 3.9. Let K be a field and V a vector space over K. Then its K-submodules are the subspaces of V.

Example 3.10. Let R be a ring considered as a module over itself. Then the R-submodules are just the ideals of R.

Definition 3.11. Let R be a ring and M a module over R. Given a subset $X \subseteq M$ we may define the submodule of \mathbf{M} generated by \mathbf{X}

$$
\langle X\rangle=\{\text { finite } R \text {-linear combinations of } X\}
$$

Definition 3.12. Let R be a ring and M an R-module. We say that M is finitely generated if there exists $m_{1}, \ldots, m_{r} \in M$ such that $M=\left\langle m_{1}, \ldots, m_{r}\right\rangle$. If M is generated by a single element, we say that M is cyclic.

Example 3.13. Let R be a ring and consider the set of all column n-vectors R^{n}. The elements

$$
e_{i}=(0, \ldots, 0,1,0, \ldots, 0)^{T}
$$

for all $i=1, \ldots n$ generate A^{n} as an A-module.
Example 3.14. Let K be a field and V a K-vector space. Then V is finitely generated as a K-module if and only if V is finite dimensional over K.

Example 3.15. Let G be an abelian group. Then G is cyclic as a \mathbb{Z}-module if and only if G is cyclic.

Example 3.16. Let R be a ring and consider it as a module over itself. Then a submodule I of R is cyclic if and only if I is principal as an ideal of R.

Remark. A submodule of a finitely generated module is not necessarily finitely generated. Indeed, consider the ring $2^{\mathbb{N}}$ with operations $X+Y=X \triangle Y=(X \backslash Y) \cup(Y \backslash X)$ and $X Y=X \cap Y$ with $0=\varnothing$ and $1=\mathbb{N}$ as a module over itself. Then $2^{\mathbb{N}}$ is finitely generated, in particular by 1 but the submodule

$$
I=\{A \subseteq \mathbb{N} \mid A \text { is finite }\}
$$

is not.
Definition 3.17. Let R be a ring and suppose that M and N are R-modules. A homomorphism from M to N is a mapping $\varphi: M \rightarrow N$ that preserves R-linear combinations. In other words

1. $\varphi\left(m+m^{\prime}\right)=\varphi(m)+\varphi\left(m^{\prime}\right)$ for all $m, m^{\prime} \in M$
2. $\varphi(a m)=a \varphi(m)$ for all $m \in M, a \in A$

Example 3.18. Let G and H be abelian groups viewed as \mathbb{Z}-modules then a \mathbb{Z}-homomorphism is exactly a group homomorphism.

Example 3.19. Let K be a field and suppose that U and V are K-vector spaces seen as K-modules. Then a K-homomorphism $U \rightarrow V$ is a K-linear map.

Remark. Let R be a ring considered as a module over itself. Then the R-endomorphisms are not the same as the ring endomorphisms of R.

Definition 3.20. Let R be a ring and M a module over R. Suppose that N is a R submodule of M. We define the quotient module, denoted M / N, to be the set of cosets of N in M :

$$
M / N=\{m+N: m \in M\}
$$

with addition defined by

$$
(m+N)+\left(m^{\prime}+N\right)=\left(m+m^{\prime}\right)+N
$$

and scalar multiplication by

$$
a \cdot(m+N)=a m+N
$$

Theorem 3.21. Let R be a ring and M, N modules over R. If $\varphi: M \rightarrow N$ is a module homomorphism then

1. $\operatorname{ker} \varphi$ is a submodule of M
2. $\operatorname{im} \varphi$ is a submodule of N
3. $M / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$

Proof. This are proved in exactly the same way as for the ideal and ring cases.
Definition 3.22. Let R be a ring and $M_{1}, \ldots M_{k}$ a collection of R-modules. We define their direct sum as

$$
A_{1} \oplus+\cdots+\oplus A_{k}
$$

to be the R-module $A_{1} \times \cdots \times A_{k}$ with component-wise operations. Furthermore, if $\left\{M_{k}\right\}$ is a countable family of R-modules, we may define their infinite direct sum in a similar way except we require that all sequences are eventually zero:

$$
\bigoplus_{i=1}^{\infty} M_{i}=\left\{\left(m_{1}, m_{2}, \ldots\right) \mid m_{i} \in M_{i} \text { and } \exists n \in \mathbb{N}, m_{j}=0 \forall j \geq n\right\}
$$

Example 3.23. Let R be a ring. Then $R^{n}=R \oplus \cdots \oplus R$ (n times)
Definition 3.24. Let R be a ring and M a module over R. Suppose that $m_{1}, \ldots, m_{n} \in M$.

1. We say that m_{1}, \ldots, m_{r} are linearly independent if

$$
r_{1} m_{1}+\cdots+r_{n} m_{n}=0
$$

implies that all r_{1}, \ldots, r_{n} are zero
2. We say that m_{1}, \ldots, m_{n} span M if $M=\left\langle m_{1}, \ldots, m_{n}\right\rangle$
3. We say that m_{1}, \ldots, m_{n} are a basis for M if they are linearly independent and span M

Remark. \varnothing is a basis for 0 .
Proposition 3.25. Let R be a ring and M a module over R. Suppose that $m_{1}, \ldots, m_{n} \in M$. Then the following are equivalent

1. m_{1}, \ldots, m_{r} form a basis for M over R
2. Every $m \in M$ can be written as a unique linear combination of the m_{i}
3. m_{1}, \ldots, m_{r} span M and given any R-module N and a mapping

$$
f:\left\{m_{1}, \ldots, m_{n}\right\} \rightarrow N
$$

Then there exists a unique extension of f to a homomorphism of modules

$$
\bar{f}: M \rightarrow N
$$

Proof. We first show that $(1) \Longrightarrow(2)$. Suppose that m_{1}, \ldots, m_{r} form a basis for M over R. Then m_{1}, \ldots, m_{r} are linearly independent and span R. Fix some $m \in M$. Since m_{1}, \ldots, m_{r} span M we may write $m=a_{1} m_{1}+\cdots+a_{n} m_{n}$. Similarly, let $m=b_{1} m_{1}+\cdots+b_{n} m_{n}$ be another linear combination. Then we have

$$
0=\left(a_{1}-b_{1}\right) m_{1}+\cdots+\left(a_{n}-b_{n}\right) m_{n}
$$

But the m_{i} are linearly independent so we must have that $a_{i}-b_{i}=0$ for all i. Hence $a_{i}=b_{i}$ and such linear combinations are unique.

We now show that $(2) \Longrightarrow$ (3). Consider the mapping $\bar{f}: M \rightarrow N$ which sends $a_{1} m_{1}+\cdots+a_{n} m_{n} \in M$ to $a_{1} f\left(m_{1}\right)+\cdots+a_{n} f\left(m_{n}\right)$. This is indeed a unique well-defined mapping since m can be represented by a unique linear combination of the m_{i}. Furthermore, \bar{f} satisfies the axioms of a module homomorphism by construction.

Finally, we show that $(3) \Longrightarrow(1)$. Let N be an R-module and $f:\left\{m_{1}, \ldots, m_{n}\right\} \rightarrow N$ be a mapping which extends uniquely to a module homomorphism $\bar{f}: M \rightarrow N$. It suffices to show that m_{i} are linearly independent. Suppose that

$$
r_{1} m_{1}+\cdots+r_{n} m_{n}=0
$$

for some $r_{i} \in R$. Let $f_{1}:\left\{m_{1}, \ldots, m_{n}\right\} \rightarrow N$ be the function sending m_{1} to 1 and the rest of the m_{i} to 0 . Then f_{1} extends to a unique function $\overline{f_{1}}: M \rightarrow N$. We then have

$$
\begin{aligned}
\overline{f_{1}}\left(r_{1} m_{1}+\cdots+r_{n} m_{n}\right) & =\overline{f_{1}}(0) \\
r_{1} f_{1}\left(m_{1}\right)+\cdots+r_{n} f_{1}\left(m_{n}\right) & =0 \\
r_{1} & =0
\end{aligned}
$$

A similar argument shows that the rest of the r_{i} are zero. Hence the m_{i} are linearly independent.

Definition 3.26. Let R be a ring and M a module over R. If there exists a basis for M over R then we say that R is free.

Proposition 3.27. Let R be a ring and M a module over R. Then M is finitely generated if and only if there exists some $n \in \mathbb{N}$ and a surjective homomorphism $\varphi: R^{n} \rightarrow M$.

Proof. First suppose that M is finitely generated over R. Fix some generating set $m_{1}, \ldots m_{n} \in$ M. Let $\varphi: R^{n} \rightarrow M$ be the unique homomorphism that sends e_{i} to m_{i}. Then clearly, $\operatorname{im} \varphi=M$.

Conversely, given a homomorphism $\varphi: R^{n} \rightarrow M \operatorname{such}$ that $\operatorname{im} \varphi=M$ then $\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right)$ is a generating set for M.

Corollary 3.28. Let R be a ring and M a module over R. Then M is cyclic if and only if $M=R / I$ for some ideal $I \triangleleft R$.

Proof. By Proposition 3.27 we know that M is a generated by one element (cyclic) if and only if there exists some surjective homomorphism $\varphi: A \rightarrow M$. By the first isomorphism theorem for rings, this is true if and only if there exists an ideal $I=\operatorname{ker} \varphi$. In other words, $M \cong R / I$.

4 Modules over a Euclidean Domain

Definition 4.1. Let R be a ring and M a module over R. We say that M is finitely presented if there exists $n \in \mathbb{N}$ and a finitely generated R-submodule of $R^{n} N$ such that

$$
M \cong R^{n} / N
$$

In other words, M is finitely presented if the kernel of the mapping $\varphi: R^{n} \rightarrow M$ is finitely generated.
Remark. Let R be a ring and let $m_{1}, \ldots, m_{r} \in R^{n}$. Denote $N=\left\langle m_{1}, \ldots, m_{n}\right\rangle$. We may write $m_{j}=\sum_{i=1}^{n} a_{i j} e_{i}$ for some $a_{i j} \in R$ and for all $j=1, \ldots, r$. Now let $f_{i}=e_{i}+N$. Then R^{n} / N can be viewed as the R-module generated by the f_{i} subject to the r relations

$$
\sum_{i=1}^{n} a_{i j} f_{i}=0
$$

Conversely, suppose that M is an R-module generated by some f_{1}, \ldots, f_{n} subject to the r relations

$$
\sum_{i=1}^{n} a_{i j} f_{i}=0
$$

where $j=1, \ldots, r$ and $a_{i j} \in R$. Then the homomorphism $\varphi: R^{n} \rightarrow M$ which maps e_{i} to f_{i} has kernel $\operatorname{ker} \varphi=\left\langle\sum a_{i 1} f_{i}, \ldots, \sum a_{i r} f_{i}\right\rangle$. Then M is clearly finitely presented since $M \cong R^{n} / \operatorname{ker} \varphi$.

We see that finitely presented modules are exactly those modules that can be described in terms of finitely many generators subject to finitely many relations.
Definition 4.2. Let R be a ring and $\varphi: R^{n} \rightarrow R^{m}$ an R-homomorphism. Let e_{1}, \ldots, e_{n} be the standard basis for R^{n} and f_{1}, \ldots, f_{m} that of R^{m}. We may write $\varphi\left(e_{j}\right)=\sum_{i=1}^{m} a_{i j} g_{i}$. Then we define the matrix of φ as

$$
\llbracket \varphi \rrbracket=\left(a_{i j}\right)_{i j} \in \operatorname{Mat}_{m \times n}(A)
$$

Remark. We can use matrices to describe the finitely presented matrix R^{n} / N where $N=\left\langle m_{1}, \ldots, m_{r}\right\rangle$ and $m_{j}=\sum_{i=1}^{n} a_{i j} e_{i} \in R^{n}$.

Let h_{1}, \ldots, h_{n} be the standard basis for R^{r}. Let $\psi: R^{r} \rightarrow R^{n}$ be the R-homomorphism such that $\psi\left(h_{j}\right)=m_{j}$ for each j. Then $\operatorname{im} \psi=N$ and the $n \times r$ matrix $\llbracket \psi \rrbracket$ encodes each relation as a column. Hence a finitely presented module can be completey described by its presentation matrix $\llbracket \psi \rrbracket$
Example 4.3. Let M be the \mathbb{Z}-module generated by e_{1}, \ldots, e_{4} subject to the the relations

$$
\begin{aligned}
e_{1}+2_{2}+3 e_{3}+4 e 4 & =0 \\
5 e_{1}+6 e_{2}+7 e_{3}+8 e_{4} & =0
\end{aligned}
$$

then its presentation matrix is

$$
\left(\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right)
$$

Definition 4.4. Let R be a ring and $\Phi \in \operatorname{Mat}_{n \times r}(R)$. Then the elementary row (column) operations on Ψ are the following:

1. swap two rows (columns)
2. multiply a row (column) by a unit in R
3. add a scalar multiple of one row (column) to another row (column)

Remark. Let R be a ring and Φ the presentation matrix of a finitely presented R-module. Then a sequence of elementary row operations results in a new set of generators and corresponding relations. A sequence of elementary column operations leaves the generators untouched and results in a new, yet equivalent, set of relations.

Definition 4.5. Let R be a ring and $\Phi, \Psi \in \operatorname{Mat}_{n \times r}(R)$ be two matrices. We say that Φ and Ψ are equivalent if one can be obtained from the other by a sequence of elementary row or column operations.

Remark. It follows from the above definition that if two finitely presented R-modules have equivalent presentation matrices then they are isomorphic.

Lemma 4.6. Let R be a Euclidean domain and $\Phi \in \operatorname{Mat}_{n \times r}(R)$ a matrix. Let $d(\Phi)$ be the greatest common divisor of all the elements of Φ. If Φ^{\prime} is the result of applying an elementary operation to Φ then $d(\Phi)=d\left(\Phi^{\prime}\right)$.

Proof. The lemma is trivial for all elementary operations except addition of scalar multiples of rows (columns). Now let $\vec{r}=\left(r_{1}, \ldots, r_{n}\right), \vec{s}=\left(s_{1}, \ldots, s_{n}\right)$ be rows of Φ and suppose that Φ^{\prime} is the result of adding $a \in R$ times \vec{s} to \vec{r}. In other words, Φ^{\prime} is the same matrix as Φ with \vec{r} replaced by $\left(r_{1}+a s_{1}, \ldots, r_{n}+a s_{n}\right)$. Then $\operatorname{gcd}\left(r_{i}+a s_{i}, s_{i}\right)=\operatorname{gcd}\left(r_{i}, s_{i}\right)$ for all i whence $d(\Phi)=d\left(\Phi^{\prime}\right)$. The argumentation for columns follows in exactly the same way.

Proposition 4.7. Let (R, φ) be a Euclidean domain and $\Phi \in \operatorname{Mat}_{n \times r}(R)$ a matrix. Let d be the greatest common divisor of all the elements of Φ. Let $\varphi(\Phi)$ denote

$$
\varphi(\Phi)=\min _{i, j} \varphi\left(a_{i j}\right)
$$

where the $a_{i j} \in R$ are the elements of Φ. Then there exists a sequence of elementary operations that change Φ into a matrix Φ^{\prime} such that the smallest element of Φ^{\prime} (with respect to φ) is d.

Proof. We shall prove the proposition by induction on $\varphi(\Phi)$. It is clear that $\varphi(\Phi) \geq \varphi(d)$. If $\varphi(\Phi)=\varphi(d)$ then we are done. If not then assume, for the induction hypothesis, that the proposition is true for all matrices Φ^{\prime} with elements in R such that $d\left(\Phi^{\prime}\right)=d$ and $\varphi\left(\Phi^{\prime}\right)<\varphi(\Phi)$.

Let $a_{u v} \in R$ be such that $\varphi\left(a_{u v}\right)=\varphi(\Phi)$. Now since $\varphi\left(a_{u v}\right)>\varphi(d)$, there exists an element of Φ, say $a_{l m} \in R$, such that $a_{u v}$ does not divide $a_{l m}$. Indeed, if this were not the case, then $a_{u v}$ would divide d.

First suppose that $a_{l m}$ is in the same column or row as $a_{u v}$. In other words, either $u=l$ or $v=m$. By the definition of a Euclidean domain, we may write $a_{l m}=q a_{u v}+r$ for some $q, r \in R$ such that either $r=0$ or $\varphi(r)<\varphi\left(a_{u v}\right)$. Since $a_{u v}$ does not divide $a_{l m}$ we must have that r is non-zero. If $v=m$ so that $a_{u v}$ and $a_{l v}$ are in the same column, we may replace
the $l^{\text {th }}$ row of Φ by the $l^{\text {th }}$ row minus q times the $u^{t h}$ row. This gives us a matrix Φ^{\prime} whose $l m^{\text {th }}$ element is r. Now since $\varphi(r)<\varphi\left(a_{u v}\right)$, we have that $\varphi\left(\Phi^{\prime}\right)<\varphi(\Phi)$. By Lemma 4.6 we see that $d\left(\Phi^{\prime}\right)=d(\Phi)=d$. Hence by the induction hypothesis, we may transform Φ^{\prime} into a matrix Ψ such that $d(\Psi)=d$ and we are done. A similar argumentation can be applied for the case where $l=u$ and $a_{u v}$ and $a_{l m}$ are in the same row.

Now suppose that $a_{l m}$ is not in the same row or column as $a_{u v}$. Then $a_{u v}$ divides every element $a_{u j}$ in the same row and every element $a_{i v}$ in the same column. We observe that we may transform Φ to a matrix Φ^{\prime} where $a_{u v}$ is fixed but all elements in the same row and column as $a_{u v}$ become zero. Indeed, starting with the $v^{\text {th }}$ column, we see that there exists a $z_{i} \in R$ such that $a_{i v}=z_{i} a_{u v}$. The row operation replacing the $i^{\text {th }}$ row with the $i^{\text {th }}$ row minus z_{i} times the $u^{\text {th }}$ row makes $a_{i v}$ equal to 0 . We repeat this process for all i not equal to u. Similarly, we can perform column operations to transform all elements in the $u^{t h}$ row except $a_{u v}$ to 0 . Call this new matrix Φ^{\prime}. By Lemma 4.6, we see that $d\left(\Phi^{\prime}\right)=d(\Phi)=d$. Furthermore, $\varphi\left(\Phi^{\prime}\right) \leq \varphi(\Phi)$. If $\varphi\left(\Phi^{\prime}\right)=d$ then we are done. If not then consider the element $a_{l m}$ that is not divisible by $a_{u v}$. By assumption, $l \neq u$ and $m \neq v$ so we may replace the $u^{t h}$ row of Φ^{\prime} by the $u^{t h}$ row plus the $l^{\text {th }}$ row. By construction, $a_{l v}=0$ so this operation does not change $a_{u v}$. Call this new matrix Ψ. Then $\varphi(\Psi) \leq \varphi(\Phi)$. However the $u^{t h}$ row now contains both $a_{l m}$ and $a_{u v}$ and we may now refer back to the previous case.

Theorem 4.8. Let R be a Euclidean domain and $\Phi \in \operatorname{Mat}_{n \times r}(R)$ a matrix. Then there exists a sequence of elementary operations that put Φ in the form

$$
\left(\begin{array}{ccc|c}
a_{1} & & & \\
& \ddots & & 0 \\
& & a_{k} & \\
\hline & 0 & 0
\end{array}\right)
$$

where $a_{1}, \ldots, a_{k} \in R \backslash\{0\}$ and $a_{1}\left|a_{2}\right| \ldots \mid a_{k}$. This is referred to as Smith normal form.
Proof. If Φ is the zero matrix then we are done so assume that $\Phi \neq 0$. By Proposition 4.7, we can transform Φ^{\prime} into a matrix with entry $a_{u v}=d=d(\Phi)$. Clearly $a_{u v}$ divides all the elements of Φ. We may then transform this matrix into one such that $a_{11}=d$. Again by row operations, we may transform the $1^{\text {st }}$ row and column such that a_{11} is unaffected and all other elements in the $1^{\text {st }}$ row and column are zero. We thus have a matrix of the form

$$
\left(\begin{array}{cc}
d & 0 \\
0 & \Phi^{\prime}
\end{array}\right)
$$

where Φ^{\prime} is a $n-1$ by $r-1$ matrix with elements in R, all divisible by d. We may repeat this process on Φ^{\prime} and, by induction, the theorem follows.

Theorem 4.9 (Structure Theorem for Finitely Presented Modules over an E.D). Let R be a Euclidean domain. Let M be a finitely presented R-module. Then

$$
M \cong R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{k}\right) \oplus R^{m}
$$

for some $m \in \mathbb{N}$ and $a_{1}, \ldots, a_{k} \in R \backslash\{0\}$ such that $a_{1}\left|a_{2}\right| \ldots \mid a_{k}$.

Proof. By the definition of a finitely presented module, we have that $M \cong R^{n} / N$ for some $n \in \mathbb{N}$ and a finitely generated R-submodule of R^{n}. Consider the presentation matrix of M, say Φ. We may transform Φ into a matrix Ψ which is in Smith normal form. Then the finitely presented module corresponding to Ψ is isomorphic to M.

Now, R^{n} is generated by e_{1}, \ldots, e_{n} and the matrix Ψ implies that N satisfies

$$
N=\left\langle a_{1} e_{1}, \ldots, a_{k} e_{k}\right\rangle
$$

for some $a_{1}, \ldots, a_{k} \in R \backslash\{0\}$ such that $a_{1}|\ldots| a_{k}$. We thus have that

$$
\begin{aligned}
M & \cong R^{n} / N \\
& \cong\left\langle e_{1}, \ldots, e_{n}\right\rangle /\left\langle a_{1} e_{1}, \ldots, a_{k} e_{k}\right\rangle \\
& \cong R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{k}\right) \oplus R^{n-k}
\end{aligned}
$$

Proposition 4.10. Let R be a PID and N an R-submodule of R^{n}. Then N is finitely generated.

Proof. We prove the proposition by induction on n. If $n=1$ then the proposition is trivial since N is necessarily a principle ideal.

Now suppose that $n>1$. Let N be an R-submodule of R^{n}. Let π_{i} denote the projection mapping of N onto its $i^{\text {th }}$ coordinate. For example,

$$
\begin{aligned}
\pi_{1}: N & \rightarrow R \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto x_{1}
\end{aligned}
$$

Then $\pi_{1}(N)$ is clearly an ideal. Since R is a PID, we must have that $\pi_{1}(N)=(x)$ for some $x \in R$. Now consider

$$
M=\left\{\left(x_{2}, \ldots, x_{n}\right) \in R^{n-1} \mid\left(0, x_{2}, \ldots, x_{n}\right) \in N\right\}
$$

Clearly, M is an R-submodule of R^{n-1} and, appealing to the induction hypothesis, we may choose a set of generators for M, say y_{1}, \ldots, y_{k}. Let $w \in N$ be such that $\pi_{1}(w)=x$. Then $\left\{w,\left(0, y_{1}\right), \ldots,\left(0, y_{k}\right)\right\}$ generate N.

Corollary 4.11. Let R be a PID. Then any finitely generated R-module is finitely presented.
Proof. Let M be a finitely generated R module. By definition, we have $M \cong R^{n} / N$ for some $n \in \mathbb{N}$ and an R-submodule of R^{n}, N. By Proposition 4.10, we have that N is finitely generated. By definition, this means that M is finitely presented.

Remark. Since every ED is a PID, the structure theorem holds for finitely generated modules over a Euclidean domain.

5 Noetherian Rings/Modules

Definition 5.1. Let R be a ring. Then R is Noetherian if every ideal of R is finitely generated.

Lemma 5.2. Let R be a ring. Then the following conditions are equivalent:

1. R is Noetherian
2. Every ascending chain of ideals of R is stationary
3. Every non-empty set of ideals of R has a maximal element.

Proof. We first show that $(1) \Longrightarrow(2)$. Suppose that R is Noetherian and let

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots
$$

be an ascending chain of ideals in R. Let I be the union of the I_{j} for all $j \geq 1$. Then I is an ideal and, since R is Noetherian, it is finitely generated say by $a_{1}, \ldots, a_{n} \in R$. Now, for all $1 \leq i \leq n$ there exists a $j \geq 1$ such that $a_{i} \in I_{j}$. Let I_{k} be the largest such ideal. Then I_{k} contains all a_{1}, \ldots, a_{n} whence $I \subseteq I_{k}$. We also have the trivial inclusion $I_{k} \subseteq I$ and we see that the chain is stationary.

We now show that $(2) \Longrightarrow(3)$. Let \mathcal{I} be a non-empty set of ideals of R. Choose an ideal $I_{1} \in \mathcal{I}$. If I_{1} is maximal then we are done. If not then $\mathcal{I} \backslash I_{1}$ is non-empty and we may choose I_{2} such that $I_{1} \subseteq I_{2}$. We may continue in this fashion, forming an ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq I_{3} \ldots$ By assumption, this chain is stationary at some I_{k}. Then this I_{k} is the desired maximal element of \mathcal{I}.

Finally, we show that $(3) \Longrightarrow(1)$. Suppose that every non-empty set of ideals of R has a maximal element. Let $I \triangleleft R$ be an ideal. Denote

$$
\mathcal{I}=\{J \subseteq I \mid J \triangleleft R \text { and } J \text { is finitely generated }\}
$$

Clearly \mathcal{I} is non-empty since it contains the zero ideal. By assumption, we may choose a maximal element of \mathcal{I}, say J. If $I=J$ then we are done. If not then consider $a \in I \backslash J$. Then $(J,\{a\})$ is a finitely generated ideal contained in I which contains J. This is a contradiction to the maximality of J. Hence $I=J$ and I is Noetherian.

Example 5.3. Let R be a PID. Then R is Noetherian.
Example 5.4. Consider $R=\mathbb{Z}\left[X_{1}, X_{2}, \ldots\right]$. Then R is not Notherian since

$$
\left(X_{1}\right) \subseteq\left(X_{1}, X_{2}\right) \ldots
$$

is an ascending chain of ideals that is not stationary.
Theorem 5.5 (Hilbert's Basis Theorem). Let R be Noetherian. Then $R[X]$ is Noetherian.
Proof. Let $I \triangleleft R[X]$ be an ideal. If $f \in R[X]$ then $\lambda(f)$ denotes its leading coefficient. For all $m \in \mathbb{N}$ we define

$$
J_{m}=\{0\} \cup\{r \in R \mid \exists f \in I, \operatorname{deg}(f)=m, \lambda(f)=r\}
$$

It is easy to see that J_{m} is an ideal of R and that $J_{m} \subseteq J_{m+1}$ for all $m \in \mathbb{N}$. This defines an ascending chain of ideals

$$
J_{0} \subseteq J_{1} \subseteq J_{2} \subseteq \ldots
$$

Now, R is Noetherian hence there must exist some $n \in \mathbb{N}$ such that $J_{n}=J_{n+1}=J_{n+2}=\ldots$. For all $m \leq n$, the ideal J_{m} is finitely generated, say

$$
J_{m}=\left(r_{m 1}, \ldots, r_{m s_{m}}\right)
$$

for some $r_{m j} \in R$ and $s_{m} \in \mathbb{N}$. Now for a fixed $m \in \mathbb{N}$, we have for each $1 \leq j \leq s_{m}$ some $f_{m j} \in I$ with $\operatorname{deg}\left(f_{m j}\right)=m$ and $\lambda\left(f_{m j}\right)=r_{m j}$. We claim that the finite set

$$
S=\left\{f_{m j} \in I \mid m \leq n, 1 \leq j \leq s_{m}\right\}
$$

generates the ideal I. Indeed, suppose $f \in I$ with $\operatorname{deg}(f)=m$. We first consider the case where $m \leq n$. We have $\lambda(f) \in J_{m}$ and thus

$$
\lambda(f)=\sum_{j=1}^{s_{m}} b_{j} r_{m j}
$$

for some $b_{j} \in R$. Hence

$$
\operatorname{deg}\left(f-\sum_{j=1}^{s_{m}} b_{j} f_{m j}\right)<m
$$

Now if $m>n$ then $\lambda(f) \in J_{m}=J_{n}$ and thus

$$
\lambda(f)=\sum_{j=1}^{s_{n}} b_{j} r_{n j}
$$

for some $b_{j} \in R$. Hence

$$
\operatorname{deg}\left(f-X^{m-n} \sum_{j=1}^{s_{n}} b_{j} f_{n j}\right)<m
$$

Inducting on m, we see that in both cases, f may be written as an $R[X]$-linear combination of elements of S and thus $I=(S)$.

Corollary 5.6. Let R be Noetherian. Then $R\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian.
Example 5.7. \mathbb{Z} is Noetherian but not a PID.
Example 5.8. Let K be a field. Then $K\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian.
Example 5.9. If R is any PID then $R\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian.
Definition 5.10. Let R be a ring and M an R-module. Then M is said to be Noetherian if every submodule of M is finitely generated.

Lemma 5.11. Let R be a ring and M an R-module. Then the following conditions are equivalent:

1. M is Noetherian
2. Every ascending chain of R-submodules of M is stationary
3. Every non-empty collection of R-submodules of M has a maximal element

Proof. This follows the exact same argumentation as the case for ideals.
Proposition 5.12. Let R be a ring and

$$
0 \longrightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \longrightarrow 0
$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if both L and N are.

Proof. First suppose that M is Noetherian. Then any ascending chain of submodules of L or N corresponds to an ascending chain of submodules of M and they are thus stationary.

Conversely, suppose that L and N are Noetherian modules. Let $M_{1} \subseteq M_{2} \subseteq \ldots$ be an ascending chain of submodules of M. Then the ascending chains

$$
\alpha^{-1}\left(M_{1}\right) \subseteq \alpha^{-1}\left(M_{2}\right) \subseteq \ldots
$$

of L and

$$
\beta\left(M_{1}\right) \subseteq \beta\left(M_{2}\right) \subseteq \ldots
$$

of N are stationary. Suppose that $\alpha^{-1}\left(M_{k}\right)=\alpha^{-1}\left(M_{K}\right)$ and $\beta\left(M_{k}\right)=\beta\left(M_{K}\right)$ for all $k \geq K$. We claim that $M_{k}=M_{K}$ for all $k \geq K$. Indeed, fix $k \geq K$ and choose $x \in M_{k}$. Then $\beta(x) \in \beta\left(M_{k}\right)=\beta\left(M_{K}\right)$ and thus there exists a $y \in M_{K}$ with $\beta(x)=\beta(y)$. This is equivalent to $x-y \in \operatorname{ker} \beta$. But the sequence is exact at M and $\operatorname{ker}(\beta)=\operatorname{im}(\alpha)$ and thus there exists $z \in L$ with $\alpha(z)=x-y \in M_{k}$. Therefore, $z \in \alpha^{-1}\left(M_{k}\right)=\alpha^{-1}\left(M_{K}\right)$ and we see that $\alpha(z)=x-y \in M_{K}$. This shows that $x \in M_{K}$ and thus $M_{k}=M_{K}$ for all $k \geq K$.

Corollary 5.13. Let R be a ring and M_{1}, \ldots, M_{n} Noetherian R-modules. Then

$$
M_{1} \oplus \cdots \oplus M_{n}
$$

is Noetherian.
Proof. We prove the corollary by induction on n. If $n=1$ then there is nothing to prove so suppose $n=2$ for the basis case. We have a short exact sequence

$$
0 \longrightarrow M_{1} \xrightarrow{\alpha} M_{1} \oplus M_{2} \xrightarrow{\beta} M_{2} \longrightarrow 0
$$

with the morphisms given by

$$
\begin{aligned}
\alpha: & M_{1}
\end{aligned} \rightarrow M_{1} \oplus M_{2}, m_{1} \mapsto\left(m_{1}, 0\right)
$$

and

$$
\begin{aligned}
\beta: M_{1} \oplus M_{2} & \rightarrow M_{2} \\
\left(m_{1}, m_{2}\right) & \mapsto m_{2}
\end{aligned}
$$

Hence by the previous proposition, $M_{1} \oplus M_{2}$ is Noetherian. The corollary then follows by induction on n.

Proposition 5.14. Let R be a Noetherian ring and M a finitely generated R-module. Then M is Noetherian.

Proof. Since M is finitely generated, there exists an $n \in \mathbb{N}$ and a R-submodule of R^{n}, say N, such that $M \cong R^{n} / N$. The previous corollary implies that R^{n} is a Noetherian R-module and we have the exact sequence

$$
R^{n} \longrightarrow M \longrightarrow 0
$$

The proposition then implies that M is Noetherian.
Corollary 5.15. Let R be a Notherian ring and M a Noetherian R-module. Then every R-submodule of M is Noetherian.

Proof. Let N be an R-submodule of M. Then, since M is Noetherian, N is finitely generated over R. Since R is a Noetherian module over itself, the previous proposition implies that N is Noetherian.

6 Factorisation

Definition 6.1. Let R be an integral domain. We say that $r \in R$ is irreducible if it is not a unit and $r=x y$ for some $x, y \in R$ implies that either x or y are units.

Definition 6.2. Let R be an integral domain. We say that $r \in R$ is prime if $r \mid x y$ for some $x, y \in R$ implies that either $r \mid x$ or $r \mid y$.

Lemma 6.3. Let R be an integral domain. Any prime element of R is necessarily irreducible.
Proof. Let $r \in R$ be prime and suppose that $r=x y$ for some $x, y \in R$. Then by definition of primality, $r \mid x$ or $r \mid y$. Suppose, without loss of generality, that $r \mid x$. Then $x=r b$ for some $b \in R$. Then $r=r b y$. Since R is an integral domain, we must have that $1=b y$ and y is thus a unit. Similarly, if $r \mid y$ then x is a unit.

Proposition 6.4. Let R be a PID. Then $r \in R$ is prime if and only if it is irreducible.
Proof. The forward case is covered by the previous lemma. It suffices to prove the backwards implication. To this end, let $r \in R$ be irreducible. Since in a PID, any non-zero ideal is prime if and only if it is maximal, it suffices to show that (r) is a maximal ideal. Suppose there exists an ideal $J \triangleleft R$ such that

$$
(r) \subseteq J \subseteq R
$$

Since R is a PID, we have $J=(s)$ for some $s \in R$. Now, $(r) \subseteq(s)$ so $r=s a$ for some $a \in R$. r is irreducible so either s is a unit or a is the unit. In the former case, $(s)=R$ and in the latter, $(s)=(r)$ and thus (r) is maximal.

Corollary 6.5. Let R be a PID and $r \in R \backslash\{0\}$. Then the following are equivalent

1. (r) is maximal
2. r is prime
3. r is irreducible

Definition 6.6. Let R be an integral domain. We say that R is a unique factorisation domain (UFD) if every non-zero $r \in R$ satisfies the following conditions:

UFD1 There exists a natural number n, irreducibles $p_{1}, \ldots, p_{n} \in R$ and a unit $u \in R$ such that

$$
r=u p_{1} \ldots p_{n}
$$

UFD2 Such a representation is unique up to units. In other words, if $r=v q_{1}, \ldots, q_{m}$ is another representation of r then $m=n$ and $p_{i}=w_{i} q_{i}$ for some units $w_{i} \in R$.

Proposition 6.7. Let R be a UFD. Then $r \in R$ is prime if and only if it is irreducible.
Proof. The forward case is again proven by the lemma. It suffices to show the backwards implication. Let $r \in R$ be irreducible and suppose $r \mid x y$ for some $x, y \in R$. Then $x y=r z$ for some $z \in R$. If either $x=0$ or $y=0$ then the result is trivial so assume they are both non-zero. Writing x, y and z as products of irreducibles, we have

$$
\left(u p_{1} \ldots p_{l}\right)\left(v q_{1} \ldots q_{m}\right)=w r s_{1} \ldots s_{n}
$$

for some units $u, v, w \in R$ and irreducibles $p_{i}, q_{j}, s_{k} \in R$. By UFD2, either r is a product of a unit with a p_{i} or the product of a unit with a q_{j}. In the former case, $r \mid x$. In the latter case $r \mid y$.
Proposition 6.8. Let R be a Noetherian integral domain. Then R satisfies UFD1.
Proof. We shall refer to $r \in R$ as undecomposable if it is non-zero, non-unitary and cannot be written as a product of irreducibles. Suppose that $r \in R$ is undecomposable. Then if $r=x_{1} y_{1}$ we must have that both x_{1} and y_{1} are non-units in R and one of them is undecomposable. Say x_{1}. We can play the same game with x_{1} and write $x_{1}=x_{2} y_{2}$ for some non-zero, non-unitary $x_{2}, y_{2} \in R$. Say that x_{2} is again undecomposable. We then have the ascending chain of ideals

$$
(r) \subseteq\left(x_{1}\right) \subseteq\left(x_{2}\right) \subseteq \ldots
$$

which is non-stationary. This is a contradiction to R being Noetherian so this process must stop and at one stage, we must be able to retrieve a decomposition into irreducibles.

Proposition 6.9. Let R be an integral domain. Then R is a UFD if and only if it satisfies UFD1 and every irreducible in R is prime.

Proof. The forward implication has been covered by previous results. It suffices to show the backwards implication. To this end, suppose that R satisfies UFD1 and every irreducible in R is prime. We must prove that R satisifies UFD2. Let $r \in R$ be non-zero, non-unitary and suppose that

$$
r=p_{1} \ldots p_{m}=q_{1} \ldots q_{n}
$$

for some irreducibles $p_{i}, q_{j} \in R$ and,$\leq n$. By assumption, each p_{i} is prime so $p_{1} \mid q_{1} \ldots q_{n}$ implies that $p_{1} \mid q_{j}$ for some $1 \leq j \leq n$. After renumbering, we may assume that $p_{1} \mid q_{1}$ so that $q_{1}=u_{1} p_{1}$. But q_{1} and p_{1} are irreducible so u_{1} must be a unit. Now, cancelling common terms on both sides of the equatuon, we have

$$
p_{2} \ldots p_{m}=u_{1} q_{2} \ldots q_{n}
$$

Continuining in this way, we obtain

$$
1=u_{1} \ldots u_{m} q_{m+1 \ldots q_{n}}
$$

for some units $u_{i} \in R$ such that $q_{i}=u_{i} p_{i}$ (after renumbering). Now if $m<n$ then necessarily q_{m+1} is a unit which is a contradiction. Hence $n=m$ and UFD2 is satisfied.

Corollary 6.10. Any Noetherian integral domain in which every irreducible is prime is a UFD. In particular, every PID is a UFD.

Remark. This implies that the following holds:

$$
\mathrm{ED} \Longrightarrow \mathrm{PID} \Longrightarrow \mathrm{UFD}
$$

Example 6.11. \mathbb{Z} is a UFD.
Example 6.12. Let K be a field. Then $K[X]$ is a UFD
Definition 6.13. Let R be a UFD. If $r, s \in R$ are non-zero and have prime factorisations

$$
\begin{aligned}
r & =u p_{1}^{e_{1}} \ldots p_{n}^{e_{n}} \\
s & =v p_{1}^{f_{1}} \ldots p_{m}^{f_{m}}
\end{aligned}
$$

for some units $u, v \in R$, primes $p_{i} \in R$, natural numbers e_{i}, f_{j} and $n \leq m$ then we define their greatest common divisor to be

$$
\operatorname{gcd}(r, s)=p_{1}^{\min \left\{e_{1}, f_{1}\right\}} \ldots p_{n}^{\min \left\{e_{n}, f_{n}\right\}}
$$

Definition 6.14. Let R be a UFD and $f=\sum_{i=0}^{n} r_{i} X^{i} \in R[X]$ a non-zero polynomial. We define the content of f to be

$$
c(f)=\underset{0 \leq i \leq n, r_{i} \neq 0}{\operatorname{gcd}}\left(r_{i}\right)
$$

Definition 6.15. Let R be a UFD and $f \in R[X]$ a non-zero polynomial. Then R is said to be primitive if $c(f)=1$.

Lemma 6.16. Let R be a UFD and $f \in R[X]$ a non-zero polynomial. Then there exists a primitive polynomial $f_{0} \in R[X]$ such that $f=c(f) f_{0}$.

Proof. This follows immediately upon dividing f through by its content. The resulting polynomial is then primitive.

Proposition 6.17. Let R be a UFD and $f, g \in R[X]$ primitive polynomials. Then $f g$ is primitive.

Proof. Suppose that $f g$ is not primitive. Then $c(f g)$ has a prime factor, say $p \in R$. Consider the homomorphism

$$
\pi: R[X] \rightarrow(R /(p))[X]
$$

Then $\pi(f) \pi(g)=\pi(f g)=0$. Now, $(R /(p))[X]$ is an integral domain so either $\pi(f)=0$ or $\pi(g)=0$. This is equivalent to saying that $p \mid c(f)$ or $p \mid c(g)$. But f and g are primitive so this is a contradiction and we must have that $f g$ is primitive.

Corollary 6.18. Let R be a UFD and $f, g \in R[X]$ non-zero polynomials. Then $c(f g)=$ $c(f) c(g)$.

Proof. We may write $f=c(f) f_{0}$ and $g=c(g) g_{0}$ for some primitive polynomials f_{0} and g_{0}. Then $f g=c(f) c(g) f_{0} g_{0}$. By the previous proposition, $f_{0} g_{0}$ is primitive and the corollary follows.

Proposition 6.19 (Gauss' Lemma). Let R be a UFD and $K=\operatorname{Frac}(R)$. If $f \in R[X]$ is non-constant and irreducible in $R[X]$ then f is irreducible in $K[X]$.

Proof. f is clearly primitive since otherwise, we would be able to factor out its non-unit content. Now suppose that $f=g h$ for some non-units (and thus non-constants) $g, h \in K[X]$. Clearing denominators we may write

$$
g=\frac{G}{r}, h=\frac{H}{s}
$$

for some $G, H \in R[X]$ and $r, s \in R$ such that r is coprime to $c(G)$ and s is coprime to $c(H)$. Then

$$
r s=c(r s f)=c(G) c(H)
$$

hence $r \mid c(H)$ and $s \mid c(G)$. We may then write

$$
f=\frac{G}{a} \frac{H}{b}=\frac{G}{b} \frac{H}{a}
$$

but the latter is a product of two polynomials in $R[X]$ and such a decomposition is not possible since f is irredudicble in R by hypothesis. Hence f is irreducible in $K[X]$.

Lemma 6.20. Let R be a UFD and $K=\operatorname{Frac}(R)$. If $f \in R[X]$ is a non-constant and irreducible polynomial then

$$
R[X] \cap f K[X]=f R[X]
$$

Proof. First suppose that $g=f h$ for some $h \in R[X]$, Then $g \in R[X]$ and $g \in f K[X]$.
Conversely, suppose that $g \in R[X] \cap f K[X]$ so that $g=f h$ for some $h \in K[X]$. We first note that f must be primitive since it is irreducible. Now write

$$
h=\frac{H}{b}
$$

with $H \in R[X]$ and $b \in R$ such that b is coprime to $c(H)$. Then $b g=f H$ and $b c(g)=c(H)$. We therefore have that $b \mid c(H)$. This implies that b is a unit in R whence $h \in R[X]$. Hence $g \in f R[X]$.

Theorem 6.21. Let R be a Noetherian UFD. Then $R[X]$ is a Noetherian UFD.
Proof. Hilbert's Basis Theorem implies that $R[X]$ is a Noetherian integral domain and, by Proposition 6.8, $R[X]$ satisfies UFD1. Hence by Proposition 6.9, it suffices to show that every irreducible in $R[X]$ is prime. To this end, suppose that $f \in R[X]$ is irreducible. We consider two cases, first suppose that $f \in R$. Then f is irreducible in R. Now R is a UFD and every irreducible is prime in R so f is prime in R. We thus have

$$
R[X] /(f) \cong(R /(f))[X]
$$

is an integral domain and thus f is prime in $R[X]$.
Now suppose that f is not constant. By the previous lemma, $R[X] \cap f K[X]=f R[X]$ and so

$$
R[X] / f R[X]=R[X] /(R[X] \cap f K[X])
$$

This implies the existence of an injective ring homomorphism

$$
R[X] / f R[X] \hookrightarrow K[X] / f K[X]
$$

Now, Gauss' Lemma implies that f is irreducible in $K[X]$ and, since $K[X]$ is a PID, is thus prime in $K[X]$. We then have that $K[X] / f K[X]$ is an integral domain that contains $R[X] / f R[X]$ as a subring. The latter is therefore also an integral domain whence f is prime in $R[X]$.
Corollary 6.22. Let R be a Noetherian UFD. Then $R\left[X_{1}, \ldots, X_{n}\right]$ is a Noetherian UFD.
Example 6.23. $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ is a UFD.
Example 6.24. If K is a field then $K\left[X_{1}, \ldots, X_{n}\right]$ is a UFD.
Proposition 6.25. Let R be an integral domain and $f \in R[X]$ a non-constant monic polynomial. Let $\mathfrak{p} \triangleleft R$ be a prime ideal of R such that the reduction $\bar{f}=f(\bmod \mathfrak{p})$ is irreducible in $(R / \mathfrak{p})[X]$. Then f is irreducible in $R[X]$.
Proof. Suppose that $f \in R[X]$ is irreducible. Then we can write $f=g h$ for some $g, h \in R[X]$ also monic and non-constant. Then $\bar{f}=\bar{g} \bar{h}$. But this contradicts the hypothesis that \bar{f} does not factor in $(R / \mathfrak{p})[X]$.
Proposition 6.26 (Eisenstein's Irreducibility Criterion). Let R be an integral domain and $f(X)=\sum_{i=0}^{n} r_{i} X^{i} \in R[X]$ be a non-constant monic polynomial in $R[X]$. Suppose there exists a prime ideal $\mathfrak{p} \triangleleft R$ such that

1. $r_{i} \in \mathfrak{p}$ for all $0 \leq i \leq n-1$
2. $r_{0} \notin \mathfrak{p}^{2}$
then f is irreducible in $R[X]$.
Proof. Suppose that $f \in R[X]$ is irreducible. Then we can write $f=g h$ for some $g, h \in R[X]$ monic and non-constant. Reducing modulo \mathfrak{p} we have

$$
\bar{g} \bar{h}=\bar{f}=X^{n}
$$

By definition of $\mathfrak{p}, R / \mathfrak{p}$ is an integral domain and so both \bar{g} and \bar{h} have zero constant term. This implies that the constant terms of g and h are elements of \mathfrak{p}. But this would imply that the constant term of f is in \mathfrak{p}^{2} which is a contradiction.

7 The Vandermonde Identity

Proposition 7.1. Consider the matrix

$$
V=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
X_{1} & X_{2} & \cdots & X_{n} \\
\vdots & \vdots & \cdots & \vdots \\
X_{1}^{n-1} & X_{2}^{n-1} & \cdots & X_{n}^{n-1}
\end{array}\right)
$$

with entries in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. Then $\operatorname{det} V=\prod_{i<j}\left(X_{j}-X_{i}\right)$
Proof. Let $\Delta\left(X_{1}, \ldots, X_{n}\right)$ denote $\operatorname{det} V \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. Fix some $i \neq j$ and set $X_{i}=X_{j}$. Then $\Delta=0$ since V has two equal columns. Hence Δ is divisible by $X_{j}-X_{i}$. Since $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ is a UFD and the polynomials $X_{j}-X_{i}$ for $i<j$ are all coprime to each other, we see that Δ is divisible by $\prod_{i<j}\left(X_{j}-X_{i}\right)$. Now, $\operatorname{deg} \Delta=\binom{n}{2}=\operatorname{deg} \prod_{i<j}\left(X_{j}-X_{i}\right)$ hence they must differ only by a constant. To determine this constant, we need look only at the the diagonal term $X_{2} X_{3}^{2} \ldots X_{n}^{n-1}$. This has coefficient 1 in both expressions so the overall constant must be 1 .

8 The Cayley-Hamilton Theorem

Theorem 8.1. Let R be a ring and M a finitely generated R-module. Suppose that φ : $M \rightarrow M$ is an R-linear endomorphism of M. Then φ satisfies a polynomial equation of the form

$$
\varphi^{n}+r_{n-1} \varphi^{n-1}+\cdots+r_{0}=0
$$

for some $r_{i} \in R$
Proof. Let x_{1}, \ldots, x_{n} be generators for M over R. Then

$$
\varphi\left(x_{i}\right)=\sum_{j=1}^{n} r_{i j} x_{j}
$$

for all $1 \leq i \leq n$ where $r_{i j} \in R$. Denote $\Phi=\left(r_{i j}\right) \in M_{n}(R)$. Given $m \in M$, we may consider M to be an $R[\varphi]$-module by taking scalar multiplication to be

$$
\varphi \cdot m=\varphi(m)
$$

Now define the matrix

$$
C=\varphi I-\Phi
$$

which is an element of $M_{n}(R[\varphi])$. Then, by construction,

$$
C\left(x_{1}, \ldots, x_{n}\right)^{T}=\overrightarrow{0} \in M^{n}
$$

Left multiplying by the adjugate of C and using the definition of the determinant, we have

$$
\operatorname{det} C\left(x_{1}, \ldots, x_{n}\right)^{T}=(\operatorname{adj} C) C\left(x_{1}, \ldots, x_{n}\right)^{T}=\overrightarrow{0} \in M^{n}
$$

But x_{1}, \ldots, x_{n} generate M so we must have that $\operatorname{det} C=0$. The result then follows upon expanding the definition of $\operatorname{det} C$.

Remark. The above theorem can be reformulated to state that any matrix with entries in a commutative ring satisfies its own characteristic polynomial - a more general version of the well-known theorem of linear algebra.

9 Chinese Remainder Theorem

Lemma 9.1. Let R be a ring and $I, J \triangleleft R$ ideals. Then the following sets are also ideals of R :

$$
\begin{aligned}
I+J & :=\{x+y \mid x \in I, y \in J\} \\
I J & :=\left\{\sum_{i=1}^{n} x_{i} y_{i} \mid x_{i} \in I, y_{i} \in J, n \in \mathbb{N}\right\}
\end{aligned}
$$

furthermore, we have the following relations:

1. $I+J=I \cup J$
2. $I J \subseteq I \cap J$
3. $(x)(y)=(x y)$ for all $x, y \in R$

Proof. It is clear that $I+J$ is a subgroup of $(R,+)$ so suppose that $r \in R$ and $i \in I+J$. By definition, $i=x+y$ for some $x \in I, y \in J$. Then $i r=(x+y) r=x r+y r$. But I and J are both ideals so $x r \in I, y r \in J$ whence $i r \in R$ and $I+J$ is an ideal.

It is also clear that $I J$ is a subgroup of $(R,+)$ so suppose that $r \in R$ and $i \in I J$. By definition we have $i=\sum_{i=1}^{n} x_{i} y_{i}$ for some $x_{i} \in I, y_{i} \in J$ and $n \in \mathbb{N}$. Then

$$
i r=\sum_{i=1}^{n} x_{i} y_{i} r
$$

Now, $y_{i} r \in J$ for all $1 \leq i \leq n$ so, clearly the above is also an element of $I J$. This shows that $I J$ is an ideal of R.

To prove the relations, first let $i \in I+J$. Then, by definition, $i=x+y$ for some $x \in I, y \in J$. Since $I \cup J$ is an ideal and, in particular, an additive group, we must therefore have that $x+y \in I+J$ if and only if $x+y \in I \cup J$.

Now suppose that $i \in I J$. Then $i=\sum_{i=1}^{n} x_{i} y_{i}$ for some $x_{i} \in I, y_{i} \in J$ and $n \in \mathbb{N}$. Now, for i to be an element of $I \cap J$, we would require that $i \in I$ and $i \in J$. Fix some $1 \leq i \leq n$ and consider the corresponding term in the expansion of $i: x_{i} y_{i} . x_{i}$ is an element of I and y_{i} is an element of R so, by definition, $x_{i} y_{i} \in I$. Similarly, $x_{i} y_{i} \in J$. Now by the additive subgroup property of $I J$, we see that the entire summation is an element of $I \cap J$ and we are done.

Finally, suppose that $i \in(x)(y)$. Then $i=\sum_{i=1}^{n} x_{i} y_{i}$ for some $x_{i} \in(x), y_{i} \in(y)$ and $n \in \mathbb{N}$. Clearly each term in the summation is an element of ($x y$) whence the entire summation is an element of $(x y)$. Conversely, suppose that $i \in(x y)$. Then $i=r x y$ for some $r \in R$. We may consider $r x$ to be an element of (x) itself so that $r x y$ is indeed an element of $(x)(y)$ and the lemma is proved.

Definition 9.2. Let R be a ring and $I, J \triangleleft R$ ideals. Then I and J are said to be comaximal if $I+J=R$.

Remark. The condition that two ideals I and J are comaximal is equivalent to the condition that there exists, $x \in I, y \in J$ such that $x+y=1$.

Example 9.3. Consider the ideals (2), (3) in \mathbb{Z}. Then these ideals are comaximal.
Lemma 9.4. Let R be a ring and $I, J \triangleleft R$ comaximal ideals. Then $I J=I \cap J$.
Proof. By the previous lemma, it suffices to show that $I \cap J \subseteq I J$. Since I and J are comaximal, we may choose $x \in I, y \in J$ such that $x+y=1$. Then, given any $i \in I \cap J$, we have $i x+i y=i \in I J$.

Theorem 9.5. Let R be a ring and $I, J \triangleleft R$ comaximal ideals. Then

$$
R / I J \cong R / I \times R / J
$$

Proof. Consider the homomorphism of rings

$$
\begin{aligned}
\varphi: R & \rightarrow R / I \times R / J \\
\varphi(r) & \mapsto(r+I, r+J)
\end{aligned}
$$

Clearly, $\operatorname{ker} \varphi=I \cap J$. By the previous lemma, the kernel is therefore equal to $I J$. Now it suffices to prove that φ is surjective whence the theorem will follow by application of the first isomorphism theorem. To this end, suppose that $\left(r_{1}+I, r_{2}+J\right) \in R / I \times R / J$. Note that

$$
\begin{aligned}
& \varphi(x)=(x+I, 1-y+J)=(0+I, 1+J) \\
& \varphi(y)=(1-x+I, y+J)=(1+I, 0+J)
\end{aligned}
$$

so that

$$
\varphi\left(r_{1} y+r_{2} x\right)=\left(r_{1}+I, r_{2}+I\right)
$$

and thus φ is surjective.
Corollary 9.6. Let R be a ring and $I_{1}, \ldots, I_{n} \triangleleft R$ a collection of pairwise comaximal ideals. Then

$$
R / I_{1} \ldots I_{n} \cong R / I_{1} \oplus \cdots \oplus R / I_{n}
$$

Proof. We prove the corollary by induction on n. The case where $n=2$ is covered by the previous theorem. It thus suffices to show that I_{1} and $I_{2} \ldots I_{n}$ are comaximal. Indeed, for all $i=2, \ldots, n$ there exists $x_{i} \in I_{1}$ and $y_{i} \in I_{i}$ such that

$$
x_{i}+y_{i}=1
$$

This implies that $y_{2} \ldots y_{n} \cong 1\left(\bmod I_{1}\right)$. In other words, there exists $\tilde{x} \in I_{1}$ such that

$$
\tilde{x}+y_{2} \ldots y_{n}=1
$$

and thus I_{1} and $I_{2} \ldots I_{n}$ are comaximal. Hence

$$
R / I_{1} \ldots I_{n} \cong R / I_{1} \oplus R / I_{2} \ldots I_{n}
$$

and the corollary follows by induction on n.
Corollary 9.7 (Chinese Remainder Theorem). Let R be a ring and suppose that $r_{1}, \ldots, r_{k} \in$ R generate pairwise comaximal ideals. Then

$$
R /\left(r_{1} \ldots r_{k}\right) \cong R /\left(r_{1}\right) \oplus \cdots \oplus R /\left(r_{k}\right)
$$

Example 9.8. Let n be a natural number and let $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be its unique factorisation into distinct primes p_{i}. Then

$$
\mathbb{Z} /(n) \cong \mathbb{Z} /\left(p_{1}^{\alpha_{1}}\right) \oplus \cdots \oplus \mathbb{Z}\left(p_{k}^{\alpha_{k}}\right)
$$

